{"title":"三维离散小波变换在实时医学成像中的FPGA实现","authors":"Richard M. Jiang, D. Crookes","doi":"10.1109/ECCTD.2007.4529647","DOIUrl":null,"url":null,"abstract":"3D discrete wavelet transform (DWT) is a compute-intensive task that is usually implemented on specific architectures in many real-time medical imaging systems. In this paper, a novel area-efficient high-throughput 3D DWT architecture is proposed based on distributed arithmetic. A tap-merging technique is used to reduce the size of DA lookup tables. The proposed architectures were designed in VHDL and mapped to a Xilinx Virtex-E FPGA. The synthesis results show the proposed architecture has a low area cost and can run up to 85 MHz, which can perform a five-level 3D wavelet analysis for seven 128 times 128 times 128 volume images per second.","PeriodicalId":445822,"journal":{"name":"2007 18th European Conference on Circuit Theory and Design","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"FPGA implementation of 3D discrete wavelet transform for real-time medical imaging\",\"authors\":\"Richard M. Jiang, D. Crookes\",\"doi\":\"10.1109/ECCTD.2007.4529647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D discrete wavelet transform (DWT) is a compute-intensive task that is usually implemented on specific architectures in many real-time medical imaging systems. In this paper, a novel area-efficient high-throughput 3D DWT architecture is proposed based on distributed arithmetic. A tap-merging technique is used to reduce the size of DA lookup tables. The proposed architectures were designed in VHDL and mapped to a Xilinx Virtex-E FPGA. The synthesis results show the proposed architecture has a low area cost and can run up to 85 MHz, which can perform a five-level 3D wavelet analysis for seven 128 times 128 times 128 volume images per second.\",\"PeriodicalId\":445822,\"journal\":{\"name\":\"2007 18th European Conference on Circuit Theory and Design\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 18th European Conference on Circuit Theory and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCTD.2007.4529647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 18th European Conference on Circuit Theory and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCTD.2007.4529647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FPGA implementation of 3D discrete wavelet transform for real-time medical imaging
3D discrete wavelet transform (DWT) is a compute-intensive task that is usually implemented on specific architectures in many real-time medical imaging systems. In this paper, a novel area-efficient high-throughput 3D DWT architecture is proposed based on distributed arithmetic. A tap-merging technique is used to reduce the size of DA lookup tables. The proposed architectures were designed in VHDL and mapped to a Xilinx Virtex-E FPGA. The synthesis results show the proposed architecture has a low area cost and can run up to 85 MHz, which can perform a five-level 3D wavelet analysis for seven 128 times 128 times 128 volume images per second.