一种提高遗传算法全局搜索能力的聚类方法

L. Schnitman, T. Yoneyama
{"title":"一种提高遗传算法全局搜索能力的聚类方法","authors":"L. Schnitman, T. Yoneyama","doi":"10.1109/SBRN.2000.889709","DOIUrl":null,"url":null,"abstract":"This work concerns some heuristic concepts that can be used to improve the search capabilities and speed of convergence of genetic algorithms (GA) in terms of finding global solutions for problems of function optimization. The main idea is to group the members of the population into clusters using a local criterion to distinguish them. Pairing of individuals belonging to distinct clusters is then promoted in order to generate descendants with improved fitness conditions. Moreover, severely unfavorable regions are made to become an exclusion zone (EZ). The descendants that are generated close to an EZ have a reduced survival probability. The search for outlying clusters is based on a continuously adjusted mutation rate to increase the probability of finding the global minima.","PeriodicalId":448461,"journal":{"name":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A clustering method for improving the global search capability of genetic algorithms\",\"authors\":\"L. Schnitman, T. Yoneyama\",\"doi\":\"10.1109/SBRN.2000.889709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work concerns some heuristic concepts that can be used to improve the search capabilities and speed of convergence of genetic algorithms (GA) in terms of finding global solutions for problems of function optimization. The main idea is to group the members of the population into clusters using a local criterion to distinguish them. Pairing of individuals belonging to distinct clusters is then promoted in order to generate descendants with improved fitness conditions. Moreover, severely unfavorable regions are made to become an exclusion zone (EZ). The descendants that are generated close to an EZ have a reduced survival probability. The search for outlying clusters is based on a continuously adjusted mutation rate to increase the probability of finding the global minima.\",\"PeriodicalId\":448461,\"journal\":{\"name\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRN.2000.889709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2000.889709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这项工作涉及一些启发式概念,可用于提高遗传算法(GA)在寻找函数优化问题的全局解决方案方面的搜索能力和收敛速度。其主要思想是使用局部标准将种群中的成员分组以区分它们。然后促进属于不同集群的个体配对,以产生具有更好适应度条件的后代。此外,严重不利的地区被定为禁区。在EZ附近产生的后代的生存概率较低。对外围簇的搜索基于不断调整的突变率,以增加找到全局最小值的概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A clustering method for improving the global search capability of genetic algorithms
This work concerns some heuristic concepts that can be used to improve the search capabilities and speed of convergence of genetic algorithms (GA) in terms of finding global solutions for problems of function optimization. The main idea is to group the members of the population into clusters using a local criterion to distinguish them. Pairing of individuals belonging to distinct clusters is then promoted in order to generate descendants with improved fitness conditions. Moreover, severely unfavorable regions are made to become an exclusion zone (EZ). The descendants that are generated close to an EZ have a reduced survival probability. The search for outlying clusters is based on a continuously adjusted mutation rate to increase the probability of finding the global minima.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信