矩形通道热液本构模型的建立与验证

Yunkang Feng, Lei Li, Yantao Nie, Xin Jiao, Jian Yi Li, Si Jia Meng, Y. Li
{"title":"矩形通道热液本构模型的建立与验证","authors":"Yunkang Feng, Lei Li, Yantao Nie, Xin Jiao, Jian Yi Li, Si Jia Meng, Y. Li","doi":"10.1115/icone29-92795","DOIUrl":null,"url":null,"abstract":"\n The plate-shaped fuel element has good heat transfer characteristics, high average power density of the core, and low temperature of the fuel core, which is beneficial to improve the power-to-volume ratio of the core and ensure the safety of the core. Therefore, plate fuels are widely used in compact reactors such as research reactors, integrated reactors, and high-flux reactors. at present, most thermal-hydraulic analysis programs, such as RELAP, RETRAN, THEATRE, are mostly developed for large-scale pressurized water reactors using rod-shaped fuels. It is suitable for narrow rectangular channel of plate type fuel core. Based on this, this paper developed a set of thermal-hydraulic constitutive relation models suitable for narrow rectangular channels, including: flow resistance coefficient calculation model, wall heat transfer Coefficient calculation model, CHF calculation model, etc. The thermal-hydraulic constitutive relational model library of rectangular channel of plate-shaped fuel element is developed by using C++ language. In this paper, the developed constitutive relation model is transplanted into the reactor thermal-hydraulic real-time simulation program, and the IAEA 10MW material test reactor (MTR) benchmark is used to verify the developed rectangular channel thermal-hydraulic constitutive relation model library. Simulation analysis is carried out for two typical accident conditions, reactive introduction (RIA) and loss of flow accident (LOFA) defined in the benchmark problem. correctness.","PeriodicalId":325659,"journal":{"name":"Volume 7B: Thermal-Hydraulics and Safety Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and Verification of Thermal-Hydraulic Constitutive Model for Rectangular Channel\",\"authors\":\"Yunkang Feng, Lei Li, Yantao Nie, Xin Jiao, Jian Yi Li, Si Jia Meng, Y. Li\",\"doi\":\"10.1115/icone29-92795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The plate-shaped fuel element has good heat transfer characteristics, high average power density of the core, and low temperature of the fuel core, which is beneficial to improve the power-to-volume ratio of the core and ensure the safety of the core. Therefore, plate fuels are widely used in compact reactors such as research reactors, integrated reactors, and high-flux reactors. at present, most thermal-hydraulic analysis programs, such as RELAP, RETRAN, THEATRE, are mostly developed for large-scale pressurized water reactors using rod-shaped fuels. It is suitable for narrow rectangular channel of plate type fuel core. Based on this, this paper developed a set of thermal-hydraulic constitutive relation models suitable for narrow rectangular channels, including: flow resistance coefficient calculation model, wall heat transfer Coefficient calculation model, CHF calculation model, etc. The thermal-hydraulic constitutive relational model library of rectangular channel of plate-shaped fuel element is developed by using C++ language. In this paper, the developed constitutive relation model is transplanted into the reactor thermal-hydraulic real-time simulation program, and the IAEA 10MW material test reactor (MTR) benchmark is used to verify the developed rectangular channel thermal-hydraulic constitutive relation model library. Simulation analysis is carried out for two typical accident conditions, reactive introduction (RIA) and loss of flow accident (LOFA) defined in the benchmark problem. correctness.\",\"PeriodicalId\":325659,\"journal\":{\"name\":\"Volume 7B: Thermal-Hydraulics and Safety Analysis\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7B: Thermal-Hydraulics and Safety Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/icone29-92795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7B: Thermal-Hydraulics and Safety Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone29-92795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

板式燃料元件传热特性好,堆芯平均功率密度高,燃料堆芯温度低,有利于提高堆芯功率体积比,保证堆芯安全。因此,板式燃料广泛应用于研究堆、综合堆、高通量堆等紧凑型反应堆中。目前,大多数热水力分析程序,如RELAP、RETRAN、THEATRE等,大多是针对使用棒状燃料的大型压水堆而开发的。适用于板式燃料芯的窄矩形通道。在此基础上,本文建立了一套适用于窄矩形通道的热液本构关系模型,包括:流动阻力系数计算模型、壁面换热系数计算模型、CHF计算模型等。利用c++语言开发了板形燃料元件矩形通道的热工本构关系模型库。本文将所建立的本构关系模型移植到反应堆热工实时仿真程序中,并利用IAEA 10MW材料试验堆(MTR)基准对所建立的矩形通道热工本构关系模型库进行验证。对基准问题中定义的两种典型事故条件——无功引入(RIA)和流损事故(LOFA)进行了仿真分析。的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and Verification of Thermal-Hydraulic Constitutive Model for Rectangular Channel
The plate-shaped fuel element has good heat transfer characteristics, high average power density of the core, and low temperature of the fuel core, which is beneficial to improve the power-to-volume ratio of the core and ensure the safety of the core. Therefore, plate fuels are widely used in compact reactors such as research reactors, integrated reactors, and high-flux reactors. at present, most thermal-hydraulic analysis programs, such as RELAP, RETRAN, THEATRE, are mostly developed for large-scale pressurized water reactors using rod-shaped fuels. It is suitable for narrow rectangular channel of plate type fuel core. Based on this, this paper developed a set of thermal-hydraulic constitutive relation models suitable for narrow rectangular channels, including: flow resistance coefficient calculation model, wall heat transfer Coefficient calculation model, CHF calculation model, etc. The thermal-hydraulic constitutive relational model library of rectangular channel of plate-shaped fuel element is developed by using C++ language. In this paper, the developed constitutive relation model is transplanted into the reactor thermal-hydraulic real-time simulation program, and the IAEA 10MW material test reactor (MTR) benchmark is used to verify the developed rectangular channel thermal-hydraulic constitutive relation model library. Simulation analysis is carried out for two typical accident conditions, reactive introduction (RIA) and loss of flow accident (LOFA) defined in the benchmark problem. correctness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信