Benoit Favre, Dilek Z. Hakkani-Tür, Slav Petrov, D. Klein
{"title":"利用句法特征进行高效的句子切分","authors":"Benoit Favre, Dilek Z. Hakkani-Tür, Slav Petrov, D. Klein","doi":"10.1109/SLT.2008.4777844","DOIUrl":null,"url":null,"abstract":"To enable downstream language processing,automatic speech recognition output must be segmented into its individual sentences. Previous sentence segmentation systems have typically been very local,using low-level prosodic and lexical features to independently decide whether or not to segment at each word boundary position. In this work,we leverage global syntactic information from a syntactic parser, which is better able to capture long distance dependencies. While some previous work has included syntactic features, ours is the first to do so in a tractable, lattice-based way, which is crucial for scaling up to long-sentence contexts. Specifically, an initial hypothesis lattice is constructed using local features. Candidate sentences are then assigned syntactic language model scores. These global syntactic scores are combined with local low-level scores in a log-linear model. The resulting system significantly outperforms the most popular long-span model for sentence segmentation (the hidden event language model) on both reference text and automatic speech recognizer output from news broadcasts.","PeriodicalId":186876,"journal":{"name":"2008 IEEE Spoken Language Technology Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Efficient sentence segmentation using syntactic features\",\"authors\":\"Benoit Favre, Dilek Z. Hakkani-Tür, Slav Petrov, D. Klein\",\"doi\":\"10.1109/SLT.2008.4777844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To enable downstream language processing,automatic speech recognition output must be segmented into its individual sentences. Previous sentence segmentation systems have typically been very local,using low-level prosodic and lexical features to independently decide whether or not to segment at each word boundary position. In this work,we leverage global syntactic information from a syntactic parser, which is better able to capture long distance dependencies. While some previous work has included syntactic features, ours is the first to do so in a tractable, lattice-based way, which is crucial for scaling up to long-sentence contexts. Specifically, an initial hypothesis lattice is constructed using local features. Candidate sentences are then assigned syntactic language model scores. These global syntactic scores are combined with local low-level scores in a log-linear model. The resulting system significantly outperforms the most popular long-span model for sentence segmentation (the hidden event language model) on both reference text and automatic speech recognizer output from news broadcasts.\",\"PeriodicalId\":186876,\"journal\":{\"name\":\"2008 IEEE Spoken Language Technology Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Spoken Language Technology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2008.4777844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Spoken Language Technology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2008.4777844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient sentence segmentation using syntactic features
To enable downstream language processing,automatic speech recognition output must be segmented into its individual sentences. Previous sentence segmentation systems have typically been very local,using low-level prosodic and lexical features to independently decide whether or not to segment at each word boundary position. In this work,we leverage global syntactic information from a syntactic parser, which is better able to capture long distance dependencies. While some previous work has included syntactic features, ours is the first to do so in a tractable, lattice-based way, which is crucial for scaling up to long-sentence contexts. Specifically, an initial hypothesis lattice is constructed using local features. Candidate sentences are then assigned syntactic language model scores. These global syntactic scores are combined with local low-level scores in a log-linear model. The resulting system significantly outperforms the most popular long-span model for sentence segmentation (the hidden event language model) on both reference text and automatic speech recognizer output from news broadcasts.