强化学习中的物理内在奖励

Jiazhou Jiang, M. Fu, Zhiyong Chen
{"title":"强化学习中的物理内在奖励","authors":"Jiazhou Jiang, M. Fu, Zhiyong Chen","doi":"10.1109/ANZCC56036.2022.9966956","DOIUrl":null,"url":null,"abstract":"Model-free algorithms in Reinforcement Learning (RL) are known to be a powerful learning tool and have performed well in solving complex issues. However, RL training results are often poor when the reward function is sparse or misleading in short term. In this paper, we propose a physics informed intrinsic reward function to assist the agent to overcome this difficulty. We evaluate the proposed intrinsic reward method on different types of actor-critic (AC) algorithms. The experimental results show noticeable improvement.","PeriodicalId":190548,"journal":{"name":"2022 Australian & New Zealand Control Conference (ANZCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Physics Informed Intrinsic Rewards in Reinforcement Learning\",\"authors\":\"Jiazhou Jiang, M. Fu, Zhiyong Chen\",\"doi\":\"10.1109/ANZCC56036.2022.9966956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model-free algorithms in Reinforcement Learning (RL) are known to be a powerful learning tool and have performed well in solving complex issues. However, RL training results are often poor when the reward function is sparse or misleading in short term. In this paper, we propose a physics informed intrinsic reward function to assist the agent to overcome this difficulty. We evaluate the proposed intrinsic reward method on different types of actor-critic (AC) algorithms. The experimental results show noticeable improvement.\",\"PeriodicalId\":190548,\"journal\":{\"name\":\"2022 Australian & New Zealand Control Conference (ANZCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Australian & New Zealand Control Conference (ANZCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANZCC56036.2022.9966956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZCC56036.2022.9966956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

强化学习(RL)中的无模型算法是一种强大的学习工具,在解决复杂问题方面表现良好。然而,当奖励函数在短期内稀疏或误导时,强化学习的训练效果往往很差。在本文中,我们提出了一个物理通知的内在奖励函数来帮助智能体克服这一困难。我们在不同类型的actor-critic (AC)算法上评估了所提出的内在奖励方法。实验结果表明,改进效果明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physics Informed Intrinsic Rewards in Reinforcement Learning
Model-free algorithms in Reinforcement Learning (RL) are known to be a powerful learning tool and have performed well in solving complex issues. However, RL training results are often poor when the reward function is sparse or misleading in short term. In this paper, we propose a physics informed intrinsic reward function to assist the agent to overcome this difficulty. We evaluate the proposed intrinsic reward method on different types of actor-critic (AC) algorithms. The experimental results show noticeable improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信