节能单通量量子神经形态计算

M. Schneider, C. Donnelly, S. Russek, B. Baek, M. Pufall, P. Hopkins, W. Rippard
{"title":"节能单通量量子神经形态计算","authors":"M. Schneider, C. Donnelly, S. Russek, B. Baek, M. Pufall, P. Hopkins, W. Rippard","doi":"10.1109/ICRC.2017.8123634","DOIUrl":null,"url":null,"abstract":"Recent experimental work has demonstrated nano- textured magnetic Josephson junctions (MJJs) that exhibit tunable spiking behavior with ultra-low training energies in the attojoule range. MJJ devices integrated with standard single-flux-quantum neural systems form a new class of neuromorphic technologies that have spiking energies between attojoules and zeptojoules, operation frequencies up to 100 GHz, and nanoscale plasticity. Here, we present the design of neural cells utilizing MJJs that form the basic elements in multilayer perception and convolutional networks. We present SPICE models, using experimentally derived Verilog A models for MJJs, to assess the performance of these cells in simple neural network structures. Modeling results indicate that the tunable Josephson critical current IC can function as a weight in a neural network. Using SPICE we model a fully connected two layer network with 9 inputs and 3 outputs.","PeriodicalId":125114,"journal":{"name":"2017 IEEE International Conference on Rebooting Computing (ICRC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Energy-Efficient Single-Flux-Quantum Based Neuromorphic Computing\",\"authors\":\"M. Schneider, C. Donnelly, S. Russek, B. Baek, M. Pufall, P. Hopkins, W. Rippard\",\"doi\":\"10.1109/ICRC.2017.8123634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent experimental work has demonstrated nano- textured magnetic Josephson junctions (MJJs) that exhibit tunable spiking behavior with ultra-low training energies in the attojoule range. MJJ devices integrated with standard single-flux-quantum neural systems form a new class of neuromorphic technologies that have spiking energies between attojoules and zeptojoules, operation frequencies up to 100 GHz, and nanoscale plasticity. Here, we present the design of neural cells utilizing MJJs that form the basic elements in multilayer perception and convolutional networks. We present SPICE models, using experimentally derived Verilog A models for MJJs, to assess the performance of these cells in simple neural network structures. Modeling results indicate that the tunable Josephson critical current IC can function as a weight in a neural network. Using SPICE we model a fully connected two layer network with 9 inputs and 3 outputs.\",\"PeriodicalId\":125114,\"journal\":{\"name\":\"2017 IEEE International Conference on Rebooting Computing (ICRC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Rebooting Computing (ICRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRC.2017.8123634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2017.8123634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

最近的实验工作证明了纳米结构磁约瑟夫森结(MJJs)在阿焦耳范围内的超低训练能量下表现出可调谐的尖峰行为。集成标准单通量量子神经系统的MJJ设备形成了一类新的神经形态技术,其峰值能量介于阿焦耳和泽焦耳之间,工作频率高达100 GHz,具有纳米级可塑性。在这里,我们提出了利用mjs构成多层感知和卷积网络的基本元素的神经细胞的设计。我们提出SPICE模型,使用实验导出的Verilog A模型用于mjs,以评估这些细胞在简单神经网络结构中的性能。建模结果表明,可调谐约瑟夫森临界电流集成电路可以作为神经网络中的权值。使用SPICE,我们建立了一个具有9个输入和3个输出的完全连接的两层网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-Efficient Single-Flux-Quantum Based Neuromorphic Computing
Recent experimental work has demonstrated nano- textured magnetic Josephson junctions (MJJs) that exhibit tunable spiking behavior with ultra-low training energies in the attojoule range. MJJ devices integrated with standard single-flux-quantum neural systems form a new class of neuromorphic technologies that have spiking energies between attojoules and zeptojoules, operation frequencies up to 100 GHz, and nanoscale plasticity. Here, we present the design of neural cells utilizing MJJs that form the basic elements in multilayer perception and convolutional networks. We present SPICE models, using experimentally derived Verilog A models for MJJs, to assess the performance of these cells in simple neural network structures. Modeling results indicate that the tunable Josephson critical current IC can function as a weight in a neural network. Using SPICE we model a fully connected two layer network with 9 inputs and 3 outputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信