{"title":"两种不同离散混沌系统的修正函数投影同步","authors":"Yin Li","doi":"10.1109/IWCFTA.2009.9","DOIUrl":null,"url":null,"abstract":"This paper is concerned with modified function projective synchronization in discrete-time chaotic and hyperchaotic systems. The control method is based on the active control idea and the backstepping design method. Firstly, the projective synchronization control method is given mathematically. Then, the 2D discrete-time H\\acute{e}non map, the 2D discrete-time kawakami system, the 3D Henon map and the 3D Henon-like map are chosen to verify the correctness and effectiveness of the control method.","PeriodicalId":279256,"journal":{"name":"2009 International Workshop on Chaos-Fractals Theories and Applications","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modified Function Projective Synchronization of Two Different Discrete-Time Chaotic Systems\",\"authors\":\"Yin Li\",\"doi\":\"10.1109/IWCFTA.2009.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with modified function projective synchronization in discrete-time chaotic and hyperchaotic systems. The control method is based on the active control idea and the backstepping design method. Firstly, the projective synchronization control method is given mathematically. Then, the 2D discrete-time H\\\\acute{e}non map, the 2D discrete-time kawakami system, the 3D Henon map and the 3D Henon-like map are chosen to verify the correctness and effectiveness of the control method.\",\"PeriodicalId\":279256,\"journal\":{\"name\":\"2009 International Workshop on Chaos-Fractals Theories and Applications\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Workshop on Chaos-Fractals Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCFTA.2009.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on Chaos-Fractals Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCFTA.2009.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modified Function Projective Synchronization of Two Different Discrete-Time Chaotic Systems
This paper is concerned with modified function projective synchronization in discrete-time chaotic and hyperchaotic systems. The control method is based on the active control idea and the backstepping design method. Firstly, the projective synchronization control method is given mathematically. Then, the 2D discrete-time H\acute{e}non map, the 2D discrete-time kawakami system, the 3D Henon map and the 3D Henon-like map are chosen to verify the correctness and effectiveness of the control method.