单眼内窥镜稀疏深度重建中特征检测器和描述符的比较评价

Kaiyun Zhang, Wenkang Fan, Yinran Chen, Xióngbiao Luó
{"title":"单眼内窥镜稀疏深度重建中特征检测器和描述符的比较评价","authors":"Kaiyun Zhang, Wenkang Fan, Yinran Chen, Xióngbiao Luó","doi":"10.1145/3561613.3561624","DOIUrl":null,"url":null,"abstract":"This paper provides a comparative performance evaluation of well-known feature detection and description algorithms. Although numerous comparisons of features have been studied for natural visual images, their performance on surgical endoscopic images is less discussed so far. We perform a thorough comparison of various feature algorithms for structure from motion to sparsely reconstruct monocular endoscopic video images. Our contribution lies in two aspects: (1) thoroughly investigate and evaluate the performance of most well-known local feature detection and descriptor methods for structure from motion and (2) systematically compare their performance for sparse depth estimation and reconstruction. According to our investigation, we achieve novel and useful insights on applying current local features to monocular endoscopic image sparse depth estimation that will be used for self-supervised learning based dense depth recovery.","PeriodicalId":348024,"journal":{"name":"Proceedings of the 5th International Conference on Control and Computer Vision","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Evaluation of Feature Detectors and Descriptors for Monocular Endoscopic Sparse Depth Reconstruction\",\"authors\":\"Kaiyun Zhang, Wenkang Fan, Yinran Chen, Xióngbiao Luó\",\"doi\":\"10.1145/3561613.3561624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a comparative performance evaluation of well-known feature detection and description algorithms. Although numerous comparisons of features have been studied for natural visual images, their performance on surgical endoscopic images is less discussed so far. We perform a thorough comparison of various feature algorithms for structure from motion to sparsely reconstruct monocular endoscopic video images. Our contribution lies in two aspects: (1) thoroughly investigate and evaluate the performance of most well-known local feature detection and descriptor methods for structure from motion and (2) systematically compare their performance for sparse depth estimation and reconstruction. According to our investigation, we achieve novel and useful insights on applying current local features to monocular endoscopic image sparse depth estimation that will be used for self-supervised learning based dense depth recovery.\",\"PeriodicalId\":348024,\"journal\":{\"name\":\"Proceedings of the 5th International Conference on Control and Computer Vision\",\"volume\":\"149 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Conference on Control and Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3561613.3561624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Control and Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3561613.3561624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提供了一种比较性能评价的知名特征检测和描述算法。虽然对自然视觉图像进行了大量的特征比较研究,但迄今为止对其在手术内窥镜图像上的表现讨论较少。我们对从运动到稀疏重建的单眼内窥镜视频图像的各种结构特征算法进行了全面的比较。我们的贡献在于两个方面:(1)深入研究和评估最著名的局部特征检测和描述子方法在运动结构中的性能;(2)系统地比较它们在稀疏深度估计和重建方面的性能。根据我们的研究,我们获得了将当前局部特征应用于单眼内窥镜图像稀疏深度估计的新颖而有用的见解,该深度估计将用于基于自监督学习的密集深度恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparative Evaluation of Feature Detectors and Descriptors for Monocular Endoscopic Sparse Depth Reconstruction
This paper provides a comparative performance evaluation of well-known feature detection and description algorithms. Although numerous comparisons of features have been studied for natural visual images, their performance on surgical endoscopic images is less discussed so far. We perform a thorough comparison of various feature algorithms for structure from motion to sparsely reconstruct monocular endoscopic video images. Our contribution lies in two aspects: (1) thoroughly investigate and evaluate the performance of most well-known local feature detection and descriptor methods for structure from motion and (2) systematically compare their performance for sparse depth estimation and reconstruction. According to our investigation, we achieve novel and useful insights on applying current local features to monocular endoscopic image sparse depth estimation that will be used for self-supervised learning based dense depth recovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信