改进的基于Few-Shot学习的图像分类

Jialin Yu, Jun Liang, Haoyang Mei, Jingwen Fan, Songsen Yu
{"title":"改进的基于Few-Shot学习的图像分类","authors":"Jialin Yu, Jun Liang, Haoyang Mei, Jingwen Fan, Songsen Yu","doi":"10.1109/ISPDS56360.2022.9874232","DOIUrl":null,"url":null,"abstract":"Few-shot learning is an approach that classify unseen classes with limited labeled samples. We propose improved networks of Relation Network to classify images with small samples. The improved networks is ECA Relation Network (ECA-RNET). The accuracy of ECA-RNET is 52.24% and 67.85% on 5-way 1-shot and 5-way 5-shot of mini-ImageNet dataset, respectively.","PeriodicalId":280244,"journal":{"name":"2022 3rd International Conference on Information Science, Parallel and Distributed Systems (ISPDS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Few-Shot Learning for Images Classification\",\"authors\":\"Jialin Yu, Jun Liang, Haoyang Mei, Jingwen Fan, Songsen Yu\",\"doi\":\"10.1109/ISPDS56360.2022.9874232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Few-shot learning is an approach that classify unseen classes with limited labeled samples. We propose improved networks of Relation Network to classify images with small samples. The improved networks is ECA Relation Network (ECA-RNET). The accuracy of ECA-RNET is 52.24% and 67.85% on 5-way 1-shot and 5-way 5-shot of mini-ImageNet dataset, respectively.\",\"PeriodicalId\":280244,\"journal\":{\"name\":\"2022 3rd International Conference on Information Science, Parallel and Distributed Systems (ISPDS)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 3rd International Conference on Information Science, Parallel and Distributed Systems (ISPDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPDS56360.2022.9874232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Information Science, Parallel and Distributed Systems (ISPDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPDS56360.2022.9874232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

少射学习是一种用有限的标记样本对看不见的类进行分类的方法。我们提出了改进的关系网络网络对小样本图像进行分类。改进后的网络是ECA关系网络(ECA- rnet)。在mini-ImageNet数据集的5-way 1-shot和5-way 5-shot上,ECA-RNET的准确率分别为52.24%和67.85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Few-Shot Learning for Images Classification
Few-shot learning is an approach that classify unseen classes with limited labeled samples. We propose improved networks of Relation Network to classify images with small samples. The improved networks is ECA Relation Network (ECA-RNET). The accuracy of ECA-RNET is 52.24% and 67.85% on 5-way 1-shot and 5-way 5-shot of mini-ImageNet dataset, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信