A. G. D. T. Abeygunawardhana, R. M. M. M. Shalinda, W. Bandara, W. D. S. Anesta, D. Kasthurirathna, L. Abeysiri
{"title":"用于废物管理的人工智能驱动的智能垃圾箱","authors":"A. G. D. T. Abeygunawardhana, R. M. M. M. Shalinda, W. Bandara, W. D. S. Anesta, D. Kasthurirathna, L. Abeysiri","doi":"10.1109/ICAC51239.2020.9357151","DOIUrl":null,"url":null,"abstract":"With increasing urbanization, waste has become a major problem in the present world. Therefore, proper waste management is a must for a healthy and clean environment. Though government authorities in most countries provide various solutions for waste management, solid waste tends to make a significant impact on the environment as they do not decompose easily. This research focuses on AI (Artificial Intelligence)-driven smart waste bin that can classify the most widely available solid waste materials namely Metal, Glass, and Plastic. The smart waste bin performs the separation of waste using image processing and machine learning algorithms. The system also performs the continuous monitoring of the collected waste level by using ultrasonic sensors. A dedicated mobile application will generate the optimal routes for the available waste collectors to collect the filled bins. Moreover, with this smart bin, the challenge of recognizing each waste item is overcome by using visual data as the source. Therefore, the usage of expensive sensor devices and filtration techniques to determine the category is disregarded. The smart bin can recognize the category of solid waste, collect it to the specified container, and notify the garbage level in each container. So, it is a portable waste management system.","PeriodicalId":253040,"journal":{"name":"2020 2nd International Conference on Advancements in Computing (ICAC)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"AI - Driven Smart Bin for Waste Management\",\"authors\":\"A. G. D. T. Abeygunawardhana, R. M. M. M. Shalinda, W. Bandara, W. D. S. Anesta, D. Kasthurirathna, L. Abeysiri\",\"doi\":\"10.1109/ICAC51239.2020.9357151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With increasing urbanization, waste has become a major problem in the present world. Therefore, proper waste management is a must for a healthy and clean environment. Though government authorities in most countries provide various solutions for waste management, solid waste tends to make a significant impact on the environment as they do not decompose easily. This research focuses on AI (Artificial Intelligence)-driven smart waste bin that can classify the most widely available solid waste materials namely Metal, Glass, and Plastic. The smart waste bin performs the separation of waste using image processing and machine learning algorithms. The system also performs the continuous monitoring of the collected waste level by using ultrasonic sensors. A dedicated mobile application will generate the optimal routes for the available waste collectors to collect the filled bins. Moreover, with this smart bin, the challenge of recognizing each waste item is overcome by using visual data as the source. Therefore, the usage of expensive sensor devices and filtration techniques to determine the category is disregarded. The smart bin can recognize the category of solid waste, collect it to the specified container, and notify the garbage level in each container. So, it is a portable waste management system.\",\"PeriodicalId\":253040,\"journal\":{\"name\":\"2020 2nd International Conference on Advancements in Computing (ICAC)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd International Conference on Advancements in Computing (ICAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAC51239.2020.9357151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Advancements in Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC51239.2020.9357151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
With increasing urbanization, waste has become a major problem in the present world. Therefore, proper waste management is a must for a healthy and clean environment. Though government authorities in most countries provide various solutions for waste management, solid waste tends to make a significant impact on the environment as they do not decompose easily. This research focuses on AI (Artificial Intelligence)-driven smart waste bin that can classify the most widely available solid waste materials namely Metal, Glass, and Plastic. The smart waste bin performs the separation of waste using image processing and machine learning algorithms. The system also performs the continuous monitoring of the collected waste level by using ultrasonic sensors. A dedicated mobile application will generate the optimal routes for the available waste collectors to collect the filled bins. Moreover, with this smart bin, the challenge of recognizing each waste item is overcome by using visual data as the source. Therefore, the usage of expensive sensor devices and filtration techniques to determine the category is disregarded. The smart bin can recognize the category of solid waste, collect it to the specified container, and notify the garbage level in each container. So, it is a portable waste management system.