保护OLAP数据集免受隐私泄露

Lingyu Wang, S. Jajodia, D. Wijesekera
{"title":"保护OLAP数据集免受隐私泄露","authors":"Lingyu Wang, S. Jajodia, D. Wijesekera","doi":"10.1109/SECPRI.2004.1301322","DOIUrl":null,"url":null,"abstract":"An OLAP (On-line Analytic Processing) system with insufficient security countermeasures may disclose sensitive information and breach an individual's privacy. Both unauthorized accesses and malicious inferences may lead to such inappropriate disclosures. Existing access control models in relational databases are unsuitable for the multi-dimensional data cubes used by OLAP. Inference control methods in statistical databases are expensive and apply to limited situations only. We first devise a flexible framework for specifying authorization objects in data cubes. The framework can partition a data cube both vertically based on dimension hierarchies and horizontally based on slices of data. We then study how to control inferences in data cubes. The proposed method eliminates both unauthorized accesses and malicious inferences. Its effectiveness does not depend on specific types of aggregation functions, external knowledge, or sensitivity criteria. The technique is efficient and readily implementable. Its on-line performance overhead is comparable to that of the minimal security requirement. Its enforcement requires little modification to existing OLAP systems.","PeriodicalId":447471,"journal":{"name":"IEEE Symposium on Security and Privacy, 2004. Proceedings. 2004","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":"{\"title\":\"Securing OLAP data cubes against privacy breaches\",\"authors\":\"Lingyu Wang, S. Jajodia, D. Wijesekera\",\"doi\":\"10.1109/SECPRI.2004.1301322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An OLAP (On-line Analytic Processing) system with insufficient security countermeasures may disclose sensitive information and breach an individual's privacy. Both unauthorized accesses and malicious inferences may lead to such inappropriate disclosures. Existing access control models in relational databases are unsuitable for the multi-dimensional data cubes used by OLAP. Inference control methods in statistical databases are expensive and apply to limited situations only. We first devise a flexible framework for specifying authorization objects in data cubes. The framework can partition a data cube both vertically based on dimension hierarchies and horizontally based on slices of data. We then study how to control inferences in data cubes. The proposed method eliminates both unauthorized accesses and malicious inferences. Its effectiveness does not depend on specific types of aggregation functions, external knowledge, or sensitivity criteria. The technique is efficient and readily implementable. Its on-line performance overhead is comparable to that of the minimal security requirement. Its enforcement requires little modification to existing OLAP systems.\",\"PeriodicalId\":447471,\"journal\":{\"name\":\"IEEE Symposium on Security and Privacy, 2004. Proceedings. 2004\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"87\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Symposium on Security and Privacy, 2004. Proceedings. 2004\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECPRI.2004.1301322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Security and Privacy, 2004. Proceedings. 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECPRI.2004.1301322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87

摘要

安全对策不足的联机分析处理(OLAP)系统可能会泄露敏感信息,侵犯个人隐私。未经授权的访问和恶意推断都可能导致这种不适当的披露。现有的关系数据库访问控制模型不适合OLAP使用的多维数据集。统计数据库中的推理控制方法是昂贵的,并且只适用于有限的情况。我们首先设计一个灵活的框架,用于在数据集中指定授权对象。该框架可以根据维度层次结构垂直划分数据立方体,也可以根据数据片水平划分数据立方体。然后,我们将研究如何控制数据集中的推断。该方法消除了未经授权的访问和恶意推理。它的有效性不依赖于特定类型的聚合函数、外部知识或敏感性标准。该技术高效且易于实现。它的在线性能开销与最低安全性要求相当。它的实施几乎不需要对现有的OLAP系统进行修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Securing OLAP data cubes against privacy breaches
An OLAP (On-line Analytic Processing) system with insufficient security countermeasures may disclose sensitive information and breach an individual's privacy. Both unauthorized accesses and malicious inferences may lead to such inappropriate disclosures. Existing access control models in relational databases are unsuitable for the multi-dimensional data cubes used by OLAP. Inference control methods in statistical databases are expensive and apply to limited situations only. We first devise a flexible framework for specifying authorization objects in data cubes. The framework can partition a data cube both vertically based on dimension hierarchies and horizontally based on slices of data. We then study how to control inferences in data cubes. The proposed method eliminates both unauthorized accesses and malicious inferences. Its effectiveness does not depend on specific types of aggregation functions, external knowledge, or sensitivity criteria. The technique is efficient and readily implementable. Its on-line performance overhead is comparable to that of the minimal security requirement. Its enforcement requires little modification to existing OLAP systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信