用于光谱图像分析的现场可编程门阵列(FPGA)主成分分析实现的优化

M. Schellhorn, G. Notni
{"title":"用于光谱图像分析的现场可编程门阵列(FPGA)主成分分析实现的优化","authors":"M. Schellhorn, G. Notni","doi":"10.1109/DICTA.2018.8615866","DOIUrl":null,"url":null,"abstract":"For the acceptance of spectral measurement technology for quality assurance and inspection in the industrial sector, the acquisition and processing of spectral images must be adapted to the production cycle. When processing spectral images, variations of the Principal Component Analysis (PCA) are often used as preprocessing steps, for example for segmentation, spectral decomposition or data compression. To speed up this time-consuming algorithm, hardware and software cores were implemented on a system-on-a-programmable-chip (SoPC). This paper deals with the optimization of this implementation to minimize calculation times. Special attention is paid to the cores used to calculate covariances and data derivation. The restructuring of the hardware IP (Intellectual property) cores and fundamental design decisions are discussed. The optimization was implemented and evaluated on a 12-channel spectral camera.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Optimization of a Principal Component Analysis Implementation on Field-Programmable Gate Arrays (FPGA) for Analysis of Spectral Images\",\"authors\":\"M. Schellhorn, G. Notni\",\"doi\":\"10.1109/DICTA.2018.8615866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the acceptance of spectral measurement technology for quality assurance and inspection in the industrial sector, the acquisition and processing of spectral images must be adapted to the production cycle. When processing spectral images, variations of the Principal Component Analysis (PCA) are often used as preprocessing steps, for example for segmentation, spectral decomposition or data compression. To speed up this time-consuming algorithm, hardware and software cores were implemented on a system-on-a-programmable-chip (SoPC). This paper deals with the optimization of this implementation to minimize calculation times. Special attention is paid to the cores used to calculate covariances and data derivation. The restructuring of the hardware IP (Intellectual property) cores and fundamental design decisions are discussed. The optimization was implemented and evaluated on a 12-channel spectral camera.\",\"PeriodicalId\":130057,\"journal\":{\"name\":\"2018 Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2018.8615866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

为了在工业领域接受用于质量保证和检验的光谱测量技术,光谱图像的获取和处理必须适应生产周期。在处理光谱图像时,通常使用主成分分析(PCA)的变化作为预处理步骤,例如分割,光谱分解或数据压缩。为了加快这一耗时的算法,硬件和软件核心被实现在一个系统上的可编程芯片(SoPC)。本文将对该实现进行优化,以最小化计算时间。特别注意用于计算协方差和数据推导的核心。讨论了硬件IP(知识产权)核心的重构和基本设计决策。在一台12通道光谱相机上进行了优化并进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of a Principal Component Analysis Implementation on Field-Programmable Gate Arrays (FPGA) for Analysis of Spectral Images
For the acceptance of spectral measurement technology for quality assurance and inspection in the industrial sector, the acquisition and processing of spectral images must be adapted to the production cycle. When processing spectral images, variations of the Principal Component Analysis (PCA) are often used as preprocessing steps, for example for segmentation, spectral decomposition or data compression. To speed up this time-consuming algorithm, hardware and software cores were implemented on a system-on-a-programmable-chip (SoPC). This paper deals with the optimization of this implementation to minimize calculation times. Special attention is paid to the cores used to calculate covariances and data derivation. The restructuring of the hardware IP (Intellectual property) cores and fundamental design decisions are discussed. The optimization was implemented and evaluated on a 12-channel spectral camera.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信