E. Oanta, C. Panait, A. Raicu, M. Barhalescu, T. Axinte
{"title":"使用基于多边形的原始bool代数建模微积分域","authors":"E. Oanta, C. Panait, A. Raicu, M. Barhalescu, T. Axinte","doi":"10.1088/1757-899X/145/8/082011","DOIUrl":null,"url":null,"abstract":"Analytical and numerical computer based models require analytical definitions of the calculus domains. The paper presents a method to model a calculus domain based on a bool algebra which uses solid and hollow polygons. The general calculus relations of the geometrical characteristics that are widely used in mechanical engineering are tested using several shapes of the calculus domain in order to draw conclusions regarding the most effective methods to discretize the domain. The paper also tests the results of several CAD commercial software applications which are able to compute the geometrical characteristics, being drawn interesting conclusions. The tests were also targeting the accuracy of the results vs. the number of nodes on the curved boundary of the cross section. The study required the development of an original software consisting of more than 1700 computer code lines. In comparison with other calculus methods, the discretization using convex polygons is a simpler approach. Moreover, this method doesn't lead to large numbers as the spline approximation did, in that case being required special software packages in order to offer multiple, arbitrary precision. The knowledge resulted from this study may be used to develop complex computer based models in engineering.","PeriodicalId":359151,"journal":{"name":"IOP Conf. Series: Materials Science and Engineering","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Calculus domains modelled using an original bool algebra based on polygons\",\"authors\":\"E. Oanta, C. Panait, A. Raicu, M. Barhalescu, T. Axinte\",\"doi\":\"10.1088/1757-899X/145/8/082011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analytical and numerical computer based models require analytical definitions of the calculus domains. The paper presents a method to model a calculus domain based on a bool algebra which uses solid and hollow polygons. The general calculus relations of the geometrical characteristics that are widely used in mechanical engineering are tested using several shapes of the calculus domain in order to draw conclusions regarding the most effective methods to discretize the domain. The paper also tests the results of several CAD commercial software applications which are able to compute the geometrical characteristics, being drawn interesting conclusions. The tests were also targeting the accuracy of the results vs. the number of nodes on the curved boundary of the cross section. The study required the development of an original software consisting of more than 1700 computer code lines. In comparison with other calculus methods, the discretization using convex polygons is a simpler approach. Moreover, this method doesn't lead to large numbers as the spline approximation did, in that case being required special software packages in order to offer multiple, arbitrary precision. The knowledge resulted from this study may be used to develop complex computer based models in engineering.\",\"PeriodicalId\":359151,\"journal\":{\"name\":\"IOP Conf. Series: Materials Science and Engineering\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IOP Conf. Series: Materials Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1757-899X/145/8/082011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conf. Series: Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1757-899X/145/8/082011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Calculus domains modelled using an original bool algebra based on polygons
Analytical and numerical computer based models require analytical definitions of the calculus domains. The paper presents a method to model a calculus domain based on a bool algebra which uses solid and hollow polygons. The general calculus relations of the geometrical characteristics that are widely used in mechanical engineering are tested using several shapes of the calculus domain in order to draw conclusions regarding the most effective methods to discretize the domain. The paper also tests the results of several CAD commercial software applications which are able to compute the geometrical characteristics, being drawn interesting conclusions. The tests were also targeting the accuracy of the results vs. the number of nodes on the curved boundary of the cross section. The study required the development of an original software consisting of more than 1700 computer code lines. In comparison with other calculus methods, the discretization using convex polygons is a simpler approach. Moreover, this method doesn't lead to large numbers as the spline approximation did, in that case being required special software packages in order to offer multiple, arbitrary precision. The knowledge resulted from this study may be used to develop complex computer based models in engineering.