非线性时间序列模型中条件分位数的统计推断

Mike K. P. So, Ray S. W. Chung
{"title":"非线性时间序列模型中条件分位数的统计推断","authors":"Mike K. P. So, Ray S. W. Chung","doi":"10.2139/ssrn.2557953","DOIUrl":null,"url":null,"abstract":"This paper studies the statistical properties of a two-step conditional quantile estimator in nonlinear time series models with unspecified error distribution. The asymptotic distribution of the quasi-maximum likelihood estimators and the filtered empirical percentiles is derived. Three applications of the asymptotic result are considered. First, we construct an interval estimator of the conditional quantile without any distributional assumptions. Second, we develop a specification test for the error distribution. Finally, using the specification test, we propose methods for estimating the tail index of the error distribution that supports the construction of a new estimator for the conditional quantile at the extreme tail. The asymptotic results and their applications are illustrated by simulations and real data analyses in which our methods for analyzing daily and intraday financial return series have been adopted.","PeriodicalId":418701,"journal":{"name":"ERN: Time-Series Models (Single) (Topic)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Statistical Inference of Conditional Quantiles in Nonlinear Time Series Models\",\"authors\":\"Mike K. P. So, Ray S. W. Chung\",\"doi\":\"10.2139/ssrn.2557953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the statistical properties of a two-step conditional quantile estimator in nonlinear time series models with unspecified error distribution. The asymptotic distribution of the quasi-maximum likelihood estimators and the filtered empirical percentiles is derived. Three applications of the asymptotic result are considered. First, we construct an interval estimator of the conditional quantile without any distributional assumptions. Second, we develop a specification test for the error distribution. Finally, using the specification test, we propose methods for estimating the tail index of the error distribution that supports the construction of a new estimator for the conditional quantile at the extreme tail. The asymptotic results and their applications are illustrated by simulations and real data analyses in which our methods for analyzing daily and intraday financial return series have been adopted.\",\"PeriodicalId\":418701,\"journal\":{\"name\":\"ERN: Time-Series Models (Single) (Topic)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Time-Series Models (Single) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2557953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Time-Series Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2557953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

研究了误差分布不确定的非线性时间序列模型的两步条件分位数估计量的统计性质。导出了拟极大似然估计量和滤波后的经验百分位数的渐近分布。讨论了该渐近结果的三种应用。首先,在不做任何分布假设的情况下构造条件分位数的区间估计量。其次,我们开发了误差分布的规范测试。最后,利用规范检验,我们提出了估计误差分布尾部指数的方法,该方法支持在极端尾部构造条件分位数的新估计量。通过模拟和实际数据分析说明了渐近结果及其应用,其中采用了我们分析每日和日内财务回报序列的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Inference of Conditional Quantiles in Nonlinear Time Series Models
This paper studies the statistical properties of a two-step conditional quantile estimator in nonlinear time series models with unspecified error distribution. The asymptotic distribution of the quasi-maximum likelihood estimators and the filtered empirical percentiles is derived. Three applications of the asymptotic result are considered. First, we construct an interval estimator of the conditional quantile without any distributional assumptions. Second, we develop a specification test for the error distribution. Finally, using the specification test, we propose methods for estimating the tail index of the error distribution that supports the construction of a new estimator for the conditional quantile at the extreme tail. The asymptotic results and their applications are illustrated by simulations and real data analyses in which our methods for analyzing daily and intraday financial return series have been adopted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信