计算非点阵肿瘤生长模型的性能分析

D. Kiss, A. Lovrics
{"title":"计算非点阵肿瘤生长模型的性能分析","authors":"D. Kiss, A. Lovrics","doi":"10.1109/NC.2017.8263270","DOIUrl":null,"url":null,"abstract":"This paper presents a performance analysis of a three dimensional off-lattice agent based model of tumor growth. The model uses short range potential functions to handle mechanical interactions. This computationally intensive process can be accelerated by various reduction techniques. We focus on two different methods, a spatial decomposition which is extremely useful for simulating low density suspended cell cultures, and a heuristic to reduce computations for simulating solid tumors. We show that these techniques can significantly improve simulation performance in appropriate situations.","PeriodicalId":140536,"journal":{"name":"2017 IEEE 30th Neumann Colloquium (NC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Performance analysis of a computational off-lattice tumor growth model\",\"authors\":\"D. Kiss, A. Lovrics\",\"doi\":\"10.1109/NC.2017.8263270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a performance analysis of a three dimensional off-lattice agent based model of tumor growth. The model uses short range potential functions to handle mechanical interactions. This computationally intensive process can be accelerated by various reduction techniques. We focus on two different methods, a spatial decomposition which is extremely useful for simulating low density suspended cell cultures, and a heuristic to reduce computations for simulating solid tumors. We show that these techniques can significantly improve simulation performance in appropriate situations.\",\"PeriodicalId\":140536,\"journal\":{\"name\":\"2017 IEEE 30th Neumann Colloquium (NC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 30th Neumann Colloquium (NC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NC.2017.8263270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 30th Neumann Colloquium (NC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NC.2017.8263270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于非晶格介质的三维肿瘤生长模型的性能分析。该模型使用短程势函数来处理机械相互作用。这种计算密集型的过程可以通过各种简化技术来加速。我们专注于两种不同的方法,空间分解是非常有用的模拟低密度悬浮细胞培养,和启发式减少计算模拟实体肿瘤。我们证明了这些技术可以在适当的情况下显着提高仿真性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance analysis of a computational off-lattice tumor growth model
This paper presents a performance analysis of a three dimensional off-lattice agent based model of tumor growth. The model uses short range potential functions to handle mechanical interactions. This computationally intensive process can be accelerated by various reduction techniques. We focus on two different methods, a spatial decomposition which is extremely useful for simulating low density suspended cell cultures, and a heuristic to reduce computations for simulating solid tumors. We show that these techniques can significantly improve simulation performance in appropriate situations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信