加密货币价格预测:短期交易中机器学习模型的比较研究

Haoran Lyu
{"title":"加密货币价格预测:短期交易中机器学习模型的比较研究","authors":"Haoran Lyu","doi":"10.1109/CACML55074.2022.00054","DOIUrl":null,"url":null,"abstract":"In recent years, the expansion of the cryptocurrency market has received significant attention among investors, studies of cryptocurrency price predictions have been conducted in various fields. With the enhancement of machine learning algorithms and increased computational capabilities, machine learning has proved one of the most efficient cryptocurrency prediction methods. However, most studies focused on single digital currency prediction or small-scale algorithm comparison for multiple currencies. This study aims to present a comparative performance of large-scale selected Machine Learning algorithms for cryptocurrency forecasting. Specifically, this paper concentrates on forecasting time series data for a short-term trading period in ten cryptocurrencies (BTC, ETH, ADA, BNB, XRP, DOGE, LUNA, LINK, LTC, and BCH) with ten selected machine learning algorithms (Decision Tree, Linear Regression, Ridge Regression, Lasso Regression, Bayesian Regression, Random Forest, K-Nearest Neighbors, Neural Networks, Gradient Boosting, and Support Vector Machine). Our experiment results show that the Gradient Boosting with the mean square error criterion is superior in predicting most major cryptocurrencies by performing statistical analysis and data visualizations. Additionally, the Random Forest and Decision Tree model built by the Classification and Regression Tree algorithm also shows outstanding performance in certain currencies such as ETH, XRP, LUNA, and LTC. Thus, all three algorithms can help anticipate the short-term evolutions of the cryptocurrency market.","PeriodicalId":137505,"journal":{"name":"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cryptocurrency Price forecasting: A Comparative Study of Machine Learning Model in Short-Term Trading\",\"authors\":\"Haoran Lyu\",\"doi\":\"10.1109/CACML55074.2022.00054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the expansion of the cryptocurrency market has received significant attention among investors, studies of cryptocurrency price predictions have been conducted in various fields. With the enhancement of machine learning algorithms and increased computational capabilities, machine learning has proved one of the most efficient cryptocurrency prediction methods. However, most studies focused on single digital currency prediction or small-scale algorithm comparison for multiple currencies. This study aims to present a comparative performance of large-scale selected Machine Learning algorithms for cryptocurrency forecasting. Specifically, this paper concentrates on forecasting time series data for a short-term trading period in ten cryptocurrencies (BTC, ETH, ADA, BNB, XRP, DOGE, LUNA, LINK, LTC, and BCH) with ten selected machine learning algorithms (Decision Tree, Linear Regression, Ridge Regression, Lasso Regression, Bayesian Regression, Random Forest, K-Nearest Neighbors, Neural Networks, Gradient Boosting, and Support Vector Machine). Our experiment results show that the Gradient Boosting with the mean square error criterion is superior in predicting most major cryptocurrencies by performing statistical analysis and data visualizations. Additionally, the Random Forest and Decision Tree model built by the Classification and Regression Tree algorithm also shows outstanding performance in certain currencies such as ETH, XRP, LUNA, and LTC. Thus, all three algorithms can help anticipate the short-term evolutions of the cryptocurrency market.\",\"PeriodicalId\":137505,\"journal\":{\"name\":\"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CACML55074.2022.00054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACML55074.2022.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,加密货币市场的扩张受到了投资者的极大关注,各个领域都进行了加密货币价格预测的研究。随着机器学习算法的增强和计算能力的提高,机器学习已被证明是最有效的加密货币预测方法之一。然而,大多数研究集中在单一数字货币的预测或多种货币的小规模算法比较。本研究旨在展示用于加密货币预测的大规模选择机器学习算法的比较性能。具体来说,本文专注于用十种选定的机器学习算法(决策树、线性回归、Ridge回归、Lasso回归、贝叶斯回归、随机森林、k近邻、神经网络、梯度增强和支持向量机)预测十种加密货币(BTC、ETH、ADA、BNB、XRP、DOGE、LUNA、LINK、LTC和BCH)的短期交易期时间序列数据。我们的实验结果表明,通过执行统计分析和数据可视化,具有均方误差准则的梯度增强在预测大多数主要加密货币方面具有优势。此外,由分类与回归树算法构建的随机森林和决策树模型在ETH、XRP、LUNA、LTC等特定货币中也表现出色。因此,这三种算法都可以帮助预测加密货币市场的短期演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cryptocurrency Price forecasting: A Comparative Study of Machine Learning Model in Short-Term Trading
In recent years, the expansion of the cryptocurrency market has received significant attention among investors, studies of cryptocurrency price predictions have been conducted in various fields. With the enhancement of machine learning algorithms and increased computational capabilities, machine learning has proved one of the most efficient cryptocurrency prediction methods. However, most studies focused on single digital currency prediction or small-scale algorithm comparison for multiple currencies. This study aims to present a comparative performance of large-scale selected Machine Learning algorithms for cryptocurrency forecasting. Specifically, this paper concentrates on forecasting time series data for a short-term trading period in ten cryptocurrencies (BTC, ETH, ADA, BNB, XRP, DOGE, LUNA, LINK, LTC, and BCH) with ten selected machine learning algorithms (Decision Tree, Linear Regression, Ridge Regression, Lasso Regression, Bayesian Regression, Random Forest, K-Nearest Neighbors, Neural Networks, Gradient Boosting, and Support Vector Machine). Our experiment results show that the Gradient Boosting with the mean square error criterion is superior in predicting most major cryptocurrencies by performing statistical analysis and data visualizations. Additionally, the Random Forest and Decision Tree model built by the Classification and Regression Tree algorithm also shows outstanding performance in certain currencies such as ETH, XRP, LUNA, and LTC. Thus, all three algorithms can help anticipate the short-term evolutions of the cryptocurrency market.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信