文本能量分布的分析与转换

Alejandro Molina-Villegas, Juan-Manuel Torres-Moreno, E. SanJuan, Gerardo E Sierra, Julio Rojas-Mora
{"title":"文本能量分布的分析与转换","authors":"Alejandro Molina-Villegas, Juan-Manuel Torres-Moreno, E. SanJuan, Gerardo E Sierra, Julio Rojas-Mora","doi":"10.1109/MICAI.2013.32","DOIUrl":null,"url":null,"abstract":"In this paper we revisit the Textual Energy model. We deal with the two major disadvantages of the Textual Energy: the asymmetry of the distribution and the unbounded ness of the maximum value. Although this model has been successfully used in several NLP tasks like summarization, clustering and sentence compression, no correction of these problems has been proposed until now. Concerning the maximum value, we analyze the computation of Textual Energy matrix and we conclude that energy values are dominated by the lexical richness in quadratic growth of the vocabulary size. Using the Box-Cox transformation, we show empirical evidence that a log transformation could correct both problems.","PeriodicalId":340039,"journal":{"name":"2013 12th Mexican International Conference on Artificial Intelligence","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analysis and Transformation of Textual Energy Distribution\",\"authors\":\"Alejandro Molina-Villegas, Juan-Manuel Torres-Moreno, E. SanJuan, Gerardo E Sierra, Julio Rojas-Mora\",\"doi\":\"10.1109/MICAI.2013.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we revisit the Textual Energy model. We deal with the two major disadvantages of the Textual Energy: the asymmetry of the distribution and the unbounded ness of the maximum value. Although this model has been successfully used in several NLP tasks like summarization, clustering and sentence compression, no correction of these problems has been proposed until now. Concerning the maximum value, we analyze the computation of Textual Energy matrix and we conclude that energy values are dominated by the lexical richness in quadratic growth of the vocabulary size. Using the Box-Cox transformation, we show empirical evidence that a log transformation could correct both problems.\",\"PeriodicalId\":340039,\"journal\":{\"name\":\"2013 12th Mexican International Conference on Artificial Intelligence\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 12th Mexican International Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MICAI.2013.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 12th Mexican International Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2013.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文回顾了文本能量模型。本文讨论了文本能量分布的不对称性和最大值的无界性这两大缺点。尽管该模型已经成功地应用于总结、聚类和句子压缩等NLP任务中,但到目前为止还没有提出对这些问题的修正。对于最大值,我们分析了文本能量矩阵的计算,得出在词汇量的二次增长中,能量值受词汇丰富度的支配。使用Box-Cox变换,我们展示了经验证据,证明对数变换可以纠正这两个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and Transformation of Textual Energy Distribution
In this paper we revisit the Textual Energy model. We deal with the two major disadvantages of the Textual Energy: the asymmetry of the distribution and the unbounded ness of the maximum value. Although this model has been successfully used in several NLP tasks like summarization, clustering and sentence compression, no correction of these problems has been proposed until now. Concerning the maximum value, we analyze the computation of Textual Energy matrix and we conclude that energy values are dominated by the lexical richness in quadratic growth of the vocabulary size. Using the Box-Cox transformation, we show empirical evidence that a log transformation could correct both problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信