布鲁姆地图

David Talbot, J. Talbot
{"title":"布鲁姆地图","authors":"David Talbot, J. Talbot","doi":"10.1137/1.9781611972986.4","DOIUrl":null,"url":null,"abstract":"We consider the problem of succinctly encoding a static map to support approximate queries. We derive upper and lower bounds on the space requirements in terms of the error rate and the entropy of the distribution of values over keys: our bounds differ by a small constant factor. For the upper bound we introduce a novel data structure, the Bloom map, generalising the Bloom filter to this problem. The lower bound follows from an information theoretic argument.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Bloom Maps\",\"authors\":\"David Talbot, J. Talbot\",\"doi\":\"10.1137/1.9781611972986.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of succinctly encoding a static map to support approximate queries. We derive upper and lower bounds on the space requirements in terms of the error rate and the entropy of the distribution of values over keys: our bounds differ by a small constant factor. For the upper bound we introduce a novel data structure, the Bloom map, generalising the Bloom filter to this problem. The lower bound follows from an information theoretic argument.\",\"PeriodicalId\":340112,\"journal\":{\"name\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611972986.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611972986.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们考虑简洁地编码静态映射以支持近似查询的问题。我们根据错误率和键上值分布的熵推导出空间需求的上界和下界:我们的上界有一个小的常数因子的差异。对于上界,我们引入了一种新的数据结构,Bloom映射,将Bloom滤波器推广到这个问题。下界是由一个信息论的论点推导出来的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bloom Maps
We consider the problem of succinctly encoding a static map to support approximate queries. We derive upper and lower bounds on the space requirements in terms of the error rate and the entropy of the distribution of values over keys: our bounds differ by a small constant factor. For the upper bound we introduce a novel data structure, the Bloom map, generalising the Bloom filter to this problem. The lower bound follows from an information theoretic argument.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信