量化神经网络的自动修剪

Luis Guerra, Bohan Zhuang, I. Reid, T. Drummond
{"title":"量化神经网络的自动修剪","authors":"Luis Guerra, Bohan Zhuang, I. Reid, T. Drummond","doi":"10.1109/DICTA52665.2021.9647074","DOIUrl":null,"url":null,"abstract":"Neural network quantization and pruning are two techniques commonly used to reduce the computational complexity and memory footprint of these models for deployment. However, most existing pruning strategies operate on full-precision and cannot be directly applied to discrete parameter distributions after quantization. In contrast, we study a combination of these two techniques to achieve further network compression. In particular, we propose an effective pruning strategy for selecting redundant low-precision filters. Furthermore, we leverage Bayesian optimization to efficiently determine the pruning ratio for each layer. We conduct extensive experiments on CIFAR-10 and ImageNet with various architectures and precisions. In particular, for ResNet-18 on ImageNet, we prune 26.12% of the model size with Binarized Neural Network quantization, achieving a top-1 classification accuracy of 47.32 % in a model of 2.47 MB and 59.30% with a 2-bit DoReFa-Net in 4.36 MB.","PeriodicalId":424950,"journal":{"name":"2021 Digital Image Computing: Techniques and Applications (DICTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Automatic Pruning for Quantized Neural Networks\",\"authors\":\"Luis Guerra, Bohan Zhuang, I. Reid, T. Drummond\",\"doi\":\"10.1109/DICTA52665.2021.9647074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural network quantization and pruning are two techniques commonly used to reduce the computational complexity and memory footprint of these models for deployment. However, most existing pruning strategies operate on full-precision and cannot be directly applied to discrete parameter distributions after quantization. In contrast, we study a combination of these two techniques to achieve further network compression. In particular, we propose an effective pruning strategy for selecting redundant low-precision filters. Furthermore, we leverage Bayesian optimization to efficiently determine the pruning ratio for each layer. We conduct extensive experiments on CIFAR-10 and ImageNet with various architectures and precisions. In particular, for ResNet-18 on ImageNet, we prune 26.12% of the model size with Binarized Neural Network quantization, achieving a top-1 classification accuracy of 47.32 % in a model of 2.47 MB and 59.30% with a 2-bit DoReFa-Net in 4.36 MB.\",\"PeriodicalId\":424950,\"journal\":{\"name\":\"2021 Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA52665.2021.9647074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA52665.2021.9647074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

神经网络量化和剪枝是两种常用的技术来降低这些模型的计算复杂度和内存占用。然而,现有的大多数剪枝策略都是全精度的,不能直接应用于量化后的离散参数分布。相反,我们研究了这两种技术的组合来实现进一步的网络压缩。特别地,我们提出了一种有效的修剪策略来选择冗余的低精度滤波器。此外,我们利用贝叶斯优化来有效地确定每层的修剪比例。我们在CIFAR-10和ImageNet上进行了各种架构和精度的广泛实验。特别是,对于ImageNet上的ResNet-18,我们使用二值化神经网络量化减少了26.12%的模型大小,在2.47 MB的模型中实现了47.32%的前1分类准确率,在4.36 MB的2位DoReFa-Net中实现了59.30%的前1分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Pruning for Quantized Neural Networks
Neural network quantization and pruning are two techniques commonly used to reduce the computational complexity and memory footprint of these models for deployment. However, most existing pruning strategies operate on full-precision and cannot be directly applied to discrete parameter distributions after quantization. In contrast, we study a combination of these two techniques to achieve further network compression. In particular, we propose an effective pruning strategy for selecting redundant low-precision filters. Furthermore, we leverage Bayesian optimization to efficiently determine the pruning ratio for each layer. We conduct extensive experiments on CIFAR-10 and ImageNet with various architectures and precisions. In particular, for ResNet-18 on ImageNet, we prune 26.12% of the model size with Binarized Neural Network quantization, achieving a top-1 classification accuracy of 47.32 % in a model of 2.47 MB and 59.30% with a 2-bit DoReFa-Net in 4.36 MB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信