复杂产品设计的集体自调谐

Elsy Kaddoum, J. Georgé
{"title":"复杂产品设计的集体自调谐","authors":"Elsy Kaddoum, J. Georgé","doi":"10.1109/SASO.2012.14","DOIUrl":null,"url":null,"abstract":"A complex product is generally a system composed of numerous interdependent components, each one representing specific disciplines and developed using associated expertise. When analysing the problem from another point of view, we can see that for each design domain, a generally huge set of real already designed elements exists. Thus, when constructing a new element, it is interesting to use this already known and acquired knowledge. This knowledge does not only contain the discipline's information but also the engineers' experience. Considering this point of view, the design of complex products defines a new generic class of complex problems. In this paper, we address this class of problems using the Self-Adaptive Population Based Reasoning (SAPBR) generic approach. It is based on the Adaptive Multi-Agent System (AMAS) theory that takes advantage from cooperation to design robust and open multi-agent systems. In SAPBR, agents use cooperative self-tuning principles in order to estimate and discover new characteristic values for the design of new elements. The obtained system is compared to the Self-Organising Map (SOM) and the Multilayer Perceptron (MP) algorithms that address similar problems.","PeriodicalId":126067,"journal":{"name":"2012 IEEE Sixth International Conference on Self-Adaptive and Self-Organizing Systems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Collective Self-Tuning for Complex Product Design\",\"authors\":\"Elsy Kaddoum, J. Georgé\",\"doi\":\"10.1109/SASO.2012.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A complex product is generally a system composed of numerous interdependent components, each one representing specific disciplines and developed using associated expertise. When analysing the problem from another point of view, we can see that for each design domain, a generally huge set of real already designed elements exists. Thus, when constructing a new element, it is interesting to use this already known and acquired knowledge. This knowledge does not only contain the discipline's information but also the engineers' experience. Considering this point of view, the design of complex products defines a new generic class of complex problems. In this paper, we address this class of problems using the Self-Adaptive Population Based Reasoning (SAPBR) generic approach. It is based on the Adaptive Multi-Agent System (AMAS) theory that takes advantage from cooperation to design robust and open multi-agent systems. In SAPBR, agents use cooperative self-tuning principles in order to estimate and discover new characteristic values for the design of new elements. The obtained system is compared to the Self-Organising Map (SOM) and the Multilayer Perceptron (MP) algorithms that address similar problems.\",\"PeriodicalId\":126067,\"journal\":{\"name\":\"2012 IEEE Sixth International Conference on Self-Adaptive and Self-Organizing Systems\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Sixth International Conference on Self-Adaptive and Self-Organizing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SASO.2012.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Sixth International Conference on Self-Adaptive and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASO.2012.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

复杂的产品通常是由许多相互依赖的组件组成的系统,每个组件代表特定的学科,并使用相关的专业知识开发。当从另一个角度分析问题时,我们可以看到,对于每个设计领域,通常存在大量实际已设计的元素。因此,在构造一个新元素时,使用这些已知的和获得的知识是很有趣的。这些知识不仅包含学科的信息,还包含工程师的经验。考虑到这一观点,复杂产品的设计定义了一类新的复杂问题。在本文中,我们使用基于自适应群体推理(SAPBR)的通用方法来解决这类问题。它以自适应多智能体系统(AMAS)理论为基础,利用协作的优势设计鲁棒性和开放性的多智能体系统。在SAPBR中,智能体使用协作自调整原则来估计和发现新元素的新特征值。将得到的系统与解决类似问题的自组织映射(SOM)和多层感知器(MP)算法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collective Self-Tuning for Complex Product Design
A complex product is generally a system composed of numerous interdependent components, each one representing specific disciplines and developed using associated expertise. When analysing the problem from another point of view, we can see that for each design domain, a generally huge set of real already designed elements exists. Thus, when constructing a new element, it is interesting to use this already known and acquired knowledge. This knowledge does not only contain the discipline's information but also the engineers' experience. Considering this point of view, the design of complex products defines a new generic class of complex problems. In this paper, we address this class of problems using the Self-Adaptive Population Based Reasoning (SAPBR) generic approach. It is based on the Adaptive Multi-Agent System (AMAS) theory that takes advantage from cooperation to design robust and open multi-agent systems. In SAPBR, agents use cooperative self-tuning principles in order to estimate and discover new characteristic values for the design of new elements. The obtained system is compared to the Self-Organising Map (SOM) and the Multilayer Perceptron (MP) algorithms that address similar problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信