Pooya Khorrami, K. Brady, Mark Hernandez, L. Gjesteby, S. Burke, Damon G. Lamb, Matthew A. Melton, K. Otto, L. Brattain
{"title":"基于深度学习的清除脑组织核分割","authors":"Pooya Khorrami, K. Brady, Mark Hernandez, L. Gjesteby, S. Burke, Damon G. Lamb, Matthew A. Melton, K. Otto, L. Brattain","doi":"10.1109/HPEC.2019.8916435","DOIUrl":null,"url":null,"abstract":"We present a deep learning approach for nuclei segmentation at scale. Our algorithm aims to address the challenge of segmentation in dense scenes with limited annotated data available. Annotation in this domain is highly manual in nature, requiring time-consuming markup of the neuron and extensive expertise, and often results in errors. For these reasons, the approach under consideration employs methods adopted from transfer learning. This approach can also be extended to segment other components of the neurons.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep Learning-Based Nuclei Segmentation of Cleared Brain Tissue\",\"authors\":\"Pooya Khorrami, K. Brady, Mark Hernandez, L. Gjesteby, S. Burke, Damon G. Lamb, Matthew A. Melton, K. Otto, L. Brattain\",\"doi\":\"10.1109/HPEC.2019.8916435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a deep learning approach for nuclei segmentation at scale. Our algorithm aims to address the challenge of segmentation in dense scenes with limited annotated data available. Annotation in this domain is highly manual in nature, requiring time-consuming markup of the neuron and extensive expertise, and often results in errors. For these reasons, the approach under consideration employs methods adopted from transfer learning. This approach can also be extended to segment other components of the neurons.\",\"PeriodicalId\":184253,\"journal\":{\"name\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2019.8916435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Learning-Based Nuclei Segmentation of Cleared Brain Tissue
We present a deep learning approach for nuclei segmentation at scale. Our algorithm aims to address the challenge of segmentation in dense scenes with limited annotated data available. Annotation in this domain is highly manual in nature, requiring time-consuming markup of the neuron and extensive expertise, and often results in errors. For these reasons, the approach under consideration employs methods adopted from transfer learning. This approach can also be extended to segment other components of the neurons.