基于稀疏基函数表示的脑电图源重构

Sofie Therese Hansen, L. K. Hansen
{"title":"基于稀疏基函数表示的脑电图源重构","authors":"Sofie Therese Hansen, L. K. Hansen","doi":"10.1109/PRNI.2014.6858521","DOIUrl":null,"url":null,"abstract":"State of the art performance of 3D EEG imaging is based on reconstruction using spatial basis function repre-sentations. In this work we augment the Variational Garrote (VG) approach for sparse approximation to incorporate spatial basis functions. As VG handles the bias variance trade-off with cross-validation this approach is more automated than competing approaches such as Multiple Sparse Priors (Friston et al., 2008) or Champagne (Wipf et al., 2010) that require manual selection of noise level and auxiliary signal free data, respectively. Finally, we propose an unbiased estimator of the reproducibility of the reconstructed activation time course based on a split-half resampling protocol.","PeriodicalId":133286,"journal":{"name":"2014 International Workshop on Pattern Recognition in Neuroimaging","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"EEG source reconstruction using sparse basis function representations\",\"authors\":\"Sofie Therese Hansen, L. K. Hansen\",\"doi\":\"10.1109/PRNI.2014.6858521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State of the art performance of 3D EEG imaging is based on reconstruction using spatial basis function repre-sentations. In this work we augment the Variational Garrote (VG) approach for sparse approximation to incorporate spatial basis functions. As VG handles the bias variance trade-off with cross-validation this approach is more automated than competing approaches such as Multiple Sparse Priors (Friston et al., 2008) or Champagne (Wipf et al., 2010) that require manual selection of noise level and auxiliary signal free data, respectively. Finally, we propose an unbiased estimator of the reproducibility of the reconstructed activation time course based on a split-half resampling protocol.\",\"PeriodicalId\":133286,\"journal\":{\"name\":\"2014 International Workshop on Pattern Recognition in Neuroimaging\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Workshop on Pattern Recognition in Neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRNI.2014.6858521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2014.6858521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目前的三维脑电图成像性能是基于空间基函数表示的重建。在这项工作中,我们扩大了稀疏逼近的变分绞喉(VG)方法,以纳入空间基函数。由于VG通过交叉验证来处理偏差方差权衡,这种方法比多重稀疏先验(Multiple Sparse prior,弗里斯顿等人,2008)或香槟(Wipf等人,2010)等竞争方法更加自动化,后者分别需要手动选择噪声水平和辅助信号自由数据。最后,我们提出了一种基于劈半重采样协议的重构激活时间过程再现性的无偏估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EEG source reconstruction using sparse basis function representations
State of the art performance of 3D EEG imaging is based on reconstruction using spatial basis function repre-sentations. In this work we augment the Variational Garrote (VG) approach for sparse approximation to incorporate spatial basis functions. As VG handles the bias variance trade-off with cross-validation this approach is more automated than competing approaches such as Multiple Sparse Priors (Friston et al., 2008) or Champagne (Wipf et al., 2010) that require manual selection of noise level and auxiliary signal free data, respectively. Finally, we propose an unbiased estimator of the reproducibility of the reconstructed activation time course based on a split-half resampling protocol.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信