鲁棒的父母识别代码

A. Barg, G. Blakley, G. Kabatiansky, C. Tavernier
{"title":"鲁棒的父母识别代码","authors":"A. Barg, G. Blakley, G. Kabatiansky, C. Tavernier","doi":"10.1109/CIG.2010.5592920","DOIUrl":null,"url":null,"abstract":"Codes with the identifiable parent property (IPP codes) are used in traitor tracing schemes that protect data broadcast by the publisher from unauthorized access or distribution. An n-word y over a finite alphabet is called a descendant of a set of t words x<sup>1</sup>, …, x<sup>t</sup> if y<inf>i</inf> ∊ {x<sup>1</sup><inf>i</inf>, …, x<sup>t</sup><inf>i</inf>} for all i = 1, … n. A code C = {x<sup>1</sup>, …, x<sup>M</sup>} is said to have the i-IPP property if for any n-word y that is a descendant of at most t parents belonging to the code it is possible to identify at least one of them. The existence of good i-IPP codes is known from earlier works. We introduce a robust version of IPP codes which allows unconditional identification of parents even if some of the coordinates in y can break away from the descent rule, i.e., can take arbitrary values from the alphabet, or become completely unreadable. By linking this problem to perfect hash functions and, more generally, to hash distances of a code, we prove initial results on the proportion of such coordinates that can be tolerated under the unconditional recovery requirement.","PeriodicalId":354925,"journal":{"name":"2010 IEEE Information Theory Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Robust parent-identifying codes\",\"authors\":\"A. Barg, G. Blakley, G. Kabatiansky, C. Tavernier\",\"doi\":\"10.1109/CIG.2010.5592920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Codes with the identifiable parent property (IPP codes) are used in traitor tracing schemes that protect data broadcast by the publisher from unauthorized access or distribution. An n-word y over a finite alphabet is called a descendant of a set of t words x<sup>1</sup>, …, x<sup>t</sup> if y<inf>i</inf> ∊ {x<sup>1</sup><inf>i</inf>, …, x<sup>t</sup><inf>i</inf>} for all i = 1, … n. A code C = {x<sup>1</sup>, …, x<sup>M</sup>} is said to have the i-IPP property if for any n-word y that is a descendant of at most t parents belonging to the code it is possible to identify at least one of them. The existence of good i-IPP codes is known from earlier works. We introduce a robust version of IPP codes which allows unconditional identification of parents even if some of the coordinates in y can break away from the descent rule, i.e., can take arbitrary values from the alphabet, or become completely unreadable. By linking this problem to perfect hash functions and, more generally, to hash distances of a code, we prove initial results on the proportion of such coordinates that can be tolerated under the unconditional recovery requirement.\",\"PeriodicalId\":354925,\"journal\":{\"name\":\"2010 IEEE Information Theory Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Information Theory Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2010.5592920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Information Theory Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2010.5592920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

具有可识别父属性的代码(IPP代码)用于叛逆者跟踪方案,以保护发布者广播的数据免受未经授权的访问或分发。一个有限字母上有n个单词的y被称为t个单词x1,…,xt的后代,如果yi {x1i,…,xti}对于所有i = 1,…n。代码C = {x1,…,xM}具有i- ipp性质,如果对于任何n个单词的y是属于该代码的最多t个父元素的后代,则可以识别至少其中一个。良好的i-IPP规范的存在是从早期的工作中得知的。我们引入了一个健壮的IPP代码版本,它允许无条件地识别父母,即使y中的一些坐标可以脱离下降规则,即,可以从字母表中取任意值,或者变得完全不可读。通过将这个问题与完美哈希函数联系起来,更一般地说,与代码的哈希距离联系起来,我们证明了在无条件恢复要求下可以容忍的这种坐标比例的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust parent-identifying codes
Codes with the identifiable parent property (IPP codes) are used in traitor tracing schemes that protect data broadcast by the publisher from unauthorized access or distribution. An n-word y over a finite alphabet is called a descendant of a set of t words x1, …, xt if yi ∊ {x1i, …, xti} for all i = 1, … n. A code C = {x1, …, xM} is said to have the i-IPP property if for any n-word y that is a descendant of at most t parents belonging to the code it is possible to identify at least one of them. The existence of good i-IPP codes is known from earlier works. We introduce a robust version of IPP codes which allows unconditional identification of parents even if some of the coordinates in y can break away from the descent rule, i.e., can take arbitrary values from the alphabet, or become completely unreadable. By linking this problem to perfect hash functions and, more generally, to hash distances of a code, we prove initial results on the proportion of such coordinates that can be tolerated under the unconditional recovery requirement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信