波动性和套利

R. Fernholz, I. Karatzas, J. Ruf
{"title":"波动性和套利","authors":"R. Fernholz, I. Karatzas, J. Ruf","doi":"10.1214/17-AAP1308","DOIUrl":null,"url":null,"abstract":"The capitalization-weighted total relative variation $\\sum_{i=1}^d \\int_0^\\cdot \\mu_i (t) \\mathrm{d} \\langle \\log \\mu_i \\rangle (t)$ in an equity market consisting of a fixed number $d$ of assets with capitalization weights $\\mu_i (\\cdot)$ is an observable and nondecreasing function of time. If this observable of the market is not just nondecreasing, but actually grows at a rate which is bounded away from zero, then strong arbitrage can be constructed relative to the market over sufficiently long time horizons. It has been an open issue for more than ten years, whether such strong outperformance of the market is possible also over arbitrary time horizons under the stated condition. We show that this is not possible in general, thus settling this long-open question. We also show that, under appropriate additional conditions, outperformance over any time horizon indeed becomes possible, and exhibit investment strategies that effect it.","PeriodicalId":286833,"journal":{"name":"arXiv: Portfolio Management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Volatility and Arbitrage\",\"authors\":\"R. Fernholz, I. Karatzas, J. Ruf\",\"doi\":\"10.1214/17-AAP1308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The capitalization-weighted total relative variation $\\\\sum_{i=1}^d \\\\int_0^\\\\cdot \\\\mu_i (t) \\\\mathrm{d} \\\\langle \\\\log \\\\mu_i \\\\rangle (t)$ in an equity market consisting of a fixed number $d$ of assets with capitalization weights $\\\\mu_i (\\\\cdot)$ is an observable and nondecreasing function of time. If this observable of the market is not just nondecreasing, but actually grows at a rate which is bounded away from zero, then strong arbitrage can be constructed relative to the market over sufficiently long time horizons. It has been an open issue for more than ten years, whether such strong outperformance of the market is possible also over arbitrary time horizons under the stated condition. We show that this is not possible in general, thus settling this long-open question. We also show that, under appropriate additional conditions, outperformance over any time horizon indeed becomes possible, and exhibit investment strategies that effect it.\",\"PeriodicalId\":286833,\"journal\":{\"name\":\"arXiv: Portfolio Management\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Portfolio Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/17-AAP1308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/17-AAP1308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

在由固定数量$d$的资产组成的股票市场中,资本化权重$\mu_i (\cdot)$的资本化加权总相对变化$\sum_{i=1}^d \int_0^\cdot \mu_i (t) \mathrm{d} \langle \log \mu_i \rangle (t)$是一个可观察的、不递减的时间函数。如果市场的这种可观察性不仅不下降,而且实际上以远离零的速度增长,那么在足够长的时间范围内,相对于市场,可以构建强大的套利。十多年来,在上述条件下,这种强劲的市场表现是否有可能在任意时间范围内表现出色,一直是一个悬而未决的问题。我们证明这在一般情况下是不可能的,从而解决了这个长期悬而未决的问题。我们还表明,在适当的附加条件下,在任何时间范围内的优异表现确实是可能的,并展示了影响它的投资策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Volatility and Arbitrage
The capitalization-weighted total relative variation $\sum_{i=1}^d \int_0^\cdot \mu_i (t) \mathrm{d} \langle \log \mu_i \rangle (t)$ in an equity market consisting of a fixed number $d$ of assets with capitalization weights $\mu_i (\cdot)$ is an observable and nondecreasing function of time. If this observable of the market is not just nondecreasing, but actually grows at a rate which is bounded away from zero, then strong arbitrage can be constructed relative to the market over sufficiently long time horizons. It has been an open issue for more than ten years, whether such strong outperformance of the market is possible also over arbitrary time horizons under the stated condition. We show that this is not possible in general, thus settling this long-open question. We also show that, under appropriate additional conditions, outperformance over any time horizon indeed becomes possible, and exhibit investment strategies that effect it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信