利率模型

Alex Paseka, T. Koulis, A. Thavaneswaran
{"title":"利率模型","authors":"Alex Paseka, T. Koulis, A. Thavaneswaran","doi":"10.2139/ssrn.1972390","DOIUrl":null,"url":null,"abstract":"In this paper, we review recent developments in modeling term structures of market yields on default-free bonds. Our discussion is restricted to continuous-time dynamic term structure models (DTSMs). We derive joint conditional moment generating functions (CMGFs) of state variables for DTSMs in which state variables follow multivariate affine diffusions and jump-diffusion processes with random intensity. As an illustration of the pricing methods, we provide special cases of the general formulations as examples. The examples span a wide cross-section of models from early one-factor models of Vasicek to more recent interest rate models with stochastic volatility, random intensity jump-diffusions and quadratic-Gaussian DTSMs. We also derive the European call option price on a zero-coupon bond for linear quadratic term structure models.","PeriodicalId":258154,"journal":{"name":"ERN: Monetary Economics & Interest Rates (Topic)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Interest Rate Models\",\"authors\":\"Alex Paseka, T. Koulis, A. Thavaneswaran\",\"doi\":\"10.2139/ssrn.1972390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we review recent developments in modeling term structures of market yields on default-free bonds. Our discussion is restricted to continuous-time dynamic term structure models (DTSMs). We derive joint conditional moment generating functions (CMGFs) of state variables for DTSMs in which state variables follow multivariate affine diffusions and jump-diffusion processes with random intensity. As an illustration of the pricing methods, we provide special cases of the general formulations as examples. The examples span a wide cross-section of models from early one-factor models of Vasicek to more recent interest rate models with stochastic volatility, random intensity jump-diffusions and quadratic-Gaussian DTSMs. We also derive the European call option price on a zero-coupon bond for linear quadratic term structure models.\",\"PeriodicalId\":258154,\"journal\":{\"name\":\"ERN: Monetary Economics & Interest Rates (Topic)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Monetary Economics & Interest Rates (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1972390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Monetary Economics & Interest Rates (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1972390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

本文回顾了无违约债券市场收益率期限结构建模的最新进展。我们的讨论仅限于连续时间动态期限结构模型(DTSMs)。对于状态变量遵循随机强度的多变量仿射扩散和跳跃扩散过程的dtsm,我们导出了状态变量的联合条件矩生成函数。为了说明定价方法,我们提供了一般配方的特殊情况作为示例。这些例子涵盖了广泛的模型,从早期的Vasicek单因素模型到最近的随机波动率、随机强度跳跃扩散和二次高斯dtsm的利率模型。我们还推导了线性二次期限结构模型下零息债券的欧式看涨期权价格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interest Rate Models
In this paper, we review recent developments in modeling term structures of market yields on default-free bonds. Our discussion is restricted to continuous-time dynamic term structure models (DTSMs). We derive joint conditional moment generating functions (CMGFs) of state variables for DTSMs in which state variables follow multivariate affine diffusions and jump-diffusion processes with random intensity. As an illustration of the pricing methods, we provide special cases of the general formulations as examples. The examples span a wide cross-section of models from early one-factor models of Vasicek to more recent interest rate models with stochastic volatility, random intensity jump-diffusions and quadratic-Gaussian DTSMs. We also derive the European call option price on a zero-coupon bond for linear quadratic term structure models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信