{"title":"一种由弱噪声抑制和弱矢量泰勒级数自适应组成的噪声鲁棒语音识别方法","authors":"Shuji Komeiji, T. Arakawa, Takafumi Koshinaka","doi":"10.1109/SLT.2012.6424205","DOIUrl":null,"url":null,"abstract":"This paper proposes a noise-robust speech recognition method composed of weak noise suppression (NS) and weak Vector Taylor Series Adaptation (VTSA). The proposed method compensates defects of NS and VTSA, and gains only the advantages by them. The weak NS reduces distortion by over-suppression that may accompany noise-suppressed speech. The weak VTSA avoids over-adaptation by offsetting a part of acoustic-model adaptation that corresponds to the suppressed noise. Evaluation results with the AURORA2 database show that the proposed method achieves as much as 1.2 points higher word accuracy (87.4%) than a method with VTSA alone (86.2%) that is always better than its counterpart with NS.","PeriodicalId":375378,"journal":{"name":"2012 IEEE Spoken Language Technology Workshop (SLT)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A noise-robust speech recognition method composed of weak noise suppression and weak Vector Taylor Series Adaptation\",\"authors\":\"Shuji Komeiji, T. Arakawa, Takafumi Koshinaka\",\"doi\":\"10.1109/SLT.2012.6424205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a noise-robust speech recognition method composed of weak noise suppression (NS) and weak Vector Taylor Series Adaptation (VTSA). The proposed method compensates defects of NS and VTSA, and gains only the advantages by them. The weak NS reduces distortion by over-suppression that may accompany noise-suppressed speech. The weak VTSA avoids over-adaptation by offsetting a part of acoustic-model adaptation that corresponds to the suppressed noise. Evaluation results with the AURORA2 database show that the proposed method achieves as much as 1.2 points higher word accuracy (87.4%) than a method with VTSA alone (86.2%) that is always better than its counterpart with NS.\",\"PeriodicalId\":375378,\"journal\":{\"name\":\"2012 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2012.6424205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2012.6424205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A noise-robust speech recognition method composed of weak noise suppression and weak Vector Taylor Series Adaptation
This paper proposes a noise-robust speech recognition method composed of weak noise suppression (NS) and weak Vector Taylor Series Adaptation (VTSA). The proposed method compensates defects of NS and VTSA, and gains only the advantages by them. The weak NS reduces distortion by over-suppression that may accompany noise-suppressed speech. The weak VTSA avoids over-adaptation by offsetting a part of acoustic-model adaptation that corresponds to the suppressed noise. Evaluation results with the AURORA2 database show that the proposed method achieves as much as 1.2 points higher word accuracy (87.4%) than a method with VTSA alone (86.2%) that is always better than its counterpart with NS.