{"title":"多元凸函数的最小绝对偏差估计","authors":"Eunji Lim, Yao Luo","doi":"10.1109/WSC.2014.7020112","DOIUrl":null,"url":null,"abstract":"When estimating a performance measure f* of a complex system from noisy data, the underlying function f* is often known to be convex. In this case, one often uses convexity to better estimate f* by fitting a convex function to data. The traditional way of fitting a convex function to data, which is done by computing a convex function minimizing the sum of squares, takes too long to compute. It also runs into an “out of memory” issue for large-scale datasets. In this paper, we propose a computationally efficient way of fitting a convex function by computing the best fit minimizing the sum of absolute deviations. The proposed least absolute deviations estimator can be computed more efficiently via a linear program than the traditional least squares estimator. We illustrate the efficiency of the proposed estimator through several examples.","PeriodicalId":446873,"journal":{"name":"Proceedings of the Winter Simulation Conference 2014","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On a least absolute deviations estimator of a multivariate convex function\",\"authors\":\"Eunji Lim, Yao Luo\",\"doi\":\"10.1109/WSC.2014.7020112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When estimating a performance measure f* of a complex system from noisy data, the underlying function f* is often known to be convex. In this case, one often uses convexity to better estimate f* by fitting a convex function to data. The traditional way of fitting a convex function to data, which is done by computing a convex function minimizing the sum of squares, takes too long to compute. It also runs into an “out of memory” issue for large-scale datasets. In this paper, we propose a computationally efficient way of fitting a convex function by computing the best fit minimizing the sum of absolute deviations. The proposed least absolute deviations estimator can be computed more efficiently via a linear program than the traditional least squares estimator. We illustrate the efficiency of the proposed estimator through several examples.\",\"PeriodicalId\":446873,\"journal\":{\"name\":\"Proceedings of the Winter Simulation Conference 2014\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Winter Simulation Conference 2014\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2014.7020112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Winter Simulation Conference 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2014.7020112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On a least absolute deviations estimator of a multivariate convex function
When estimating a performance measure f* of a complex system from noisy data, the underlying function f* is often known to be convex. In this case, one often uses convexity to better estimate f* by fitting a convex function to data. The traditional way of fitting a convex function to data, which is done by computing a convex function minimizing the sum of squares, takes too long to compute. It also runs into an “out of memory” issue for large-scale datasets. In this paper, we propose a computationally efficient way of fitting a convex function by computing the best fit minimizing the sum of absolute deviations. The proposed least absolute deviations estimator can be computed more efficiently via a linear program than the traditional least squares estimator. We illustrate the efficiency of the proposed estimator through several examples.