一种支持电网的电动汽车双向潮流控制器

A. Sgarbossa, R. Turri, G. Putrus, G. Lacey
{"title":"一种支持电网的电动汽车双向潮流控制器","authors":"A. Sgarbossa, R. Turri, G. Putrus, G. Lacey","doi":"10.1109/UPEC.2015.7339939","DOIUrl":null,"url":null,"abstract":"The spreading of electrical vehicles leads to a positive impact on the mobility field from the ecological, economical and efficiency point of view. Unfortunately this diffusion is also potentially capable of negative reverberations on distribution and transmission networks, since EVs can be considered as a new load category. Rather than preventing this virtually negative situation, it is possible for the grid to take advantage of the capabilities of EVs' batteries to implement ancillary services: for this reason the proposed vehicle's battery charger is designed to operate with bidirectional power flow (implementing V2G - Vehicle to Grid- and G2V -Grid to Vehicle- modes). The target is pursued through grid manager request towards grid connected EVs. If the power flow's direction and amount is enabled by the EV controller (depending on the SOC of the battery), the control system acquires the reference signal, which is the network sinusoidal voltage wave. This synchronization between the device and the grid is followed by the battery charger's modulation of a voltage sine wave with a certain amplitude and phase displacement with respect to the reference signal, in order to reach the desired working point which provides ancillary services to the grid. This paper analyses both the control strategy and the profiles of the transient states that take place when the switch between working points is request.","PeriodicalId":446482,"journal":{"name":"2015 50th International Universities Power Engineering Conference (UPEC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A bidirectional power flow controller for EVs to support the grid\",\"authors\":\"A. Sgarbossa, R. Turri, G. Putrus, G. Lacey\",\"doi\":\"10.1109/UPEC.2015.7339939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spreading of electrical vehicles leads to a positive impact on the mobility field from the ecological, economical and efficiency point of view. Unfortunately this diffusion is also potentially capable of negative reverberations on distribution and transmission networks, since EVs can be considered as a new load category. Rather than preventing this virtually negative situation, it is possible for the grid to take advantage of the capabilities of EVs' batteries to implement ancillary services: for this reason the proposed vehicle's battery charger is designed to operate with bidirectional power flow (implementing V2G - Vehicle to Grid- and G2V -Grid to Vehicle- modes). The target is pursued through grid manager request towards grid connected EVs. If the power flow's direction and amount is enabled by the EV controller (depending on the SOC of the battery), the control system acquires the reference signal, which is the network sinusoidal voltage wave. This synchronization between the device and the grid is followed by the battery charger's modulation of a voltage sine wave with a certain amplitude and phase displacement with respect to the reference signal, in order to reach the desired working point which provides ancillary services to the grid. This paper analyses both the control strategy and the profiles of the transient states that take place when the switch between working points is request.\",\"PeriodicalId\":446482,\"journal\":{\"name\":\"2015 50th International Universities Power Engineering Conference (UPEC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 50th International Universities Power Engineering Conference (UPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC.2015.7339939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 50th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2015.7339939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

从生态、经济和效率的角度来看,电动汽车的普及对出行领域产生了积极的影响。不幸的是,这种扩散也可能对配电和输电网络产生负面影响,因为电动汽车可以被视为一种新的负载类别。电网可以利用电动汽车电池的功能来实现辅助服务,而不是防止这种实际上的负面情况:因此,拟议的汽车电池充电器被设计为双向功率流(实现V2G -车辆到电网-和G2V -电网到车辆-模式)。通过对并网电动汽车的网格管理器请求来实现目标。如果电动汽车控制器使能功率流的方向和数量(取决于电池的SOC),则控制系统获取参考信号,即网络正弦电压波。在设备和电网之间的同步之后,电池充电器对相对于参考信号具有一定幅度和相位位移的电压正弦波进行调制,以达到为电网提供辅助服务的所需工作点。本文分析了控制策略和工作点切换时的暂态分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A bidirectional power flow controller for EVs to support the grid
The spreading of electrical vehicles leads to a positive impact on the mobility field from the ecological, economical and efficiency point of view. Unfortunately this diffusion is also potentially capable of negative reverberations on distribution and transmission networks, since EVs can be considered as a new load category. Rather than preventing this virtually negative situation, it is possible for the grid to take advantage of the capabilities of EVs' batteries to implement ancillary services: for this reason the proposed vehicle's battery charger is designed to operate with bidirectional power flow (implementing V2G - Vehicle to Grid- and G2V -Grid to Vehicle- modes). The target is pursued through grid manager request towards grid connected EVs. If the power flow's direction and amount is enabled by the EV controller (depending on the SOC of the battery), the control system acquires the reference signal, which is the network sinusoidal voltage wave. This synchronization between the device and the grid is followed by the battery charger's modulation of a voltage sine wave with a certain amplitude and phase displacement with respect to the reference signal, in order to reach the desired working point which provides ancillary services to the grid. This paper analyses both the control strategy and the profiles of the transient states that take place when the switch between working points is request.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信