多智能体信念PAC语义的可学习性

I. Mocanu, Vaishak Belle, Brendan Juba
{"title":"多智能体信念PAC语义的可学习性","authors":"I. Mocanu, Vaishak Belle, Brendan Juba","doi":"10.5555/3545946.3599016","DOIUrl":null,"url":null,"abstract":"\n The tension between deduction and induction is perhaps the most fundamental issue in areas such as philosophy, cognition, and artificial intelligence. In an influential paper, Valiant recognized that the challenge of learning should be integrated with deduction. In particular, he proposed a semantics to capture the quality possessed by the output of probably approximately correct (PAC) learning algorithms when formulated in a logic. Although weaker than classical entailment, it allows for a powerful model-theoretic framework for answering queries. In this paper, we provide a new technical foundation to demonstrate PAC learning with multi-agent epistemic logics. To circumvent the negative results in the literature on the difficulty of robust learning with the PAC semantics, we consider so-called implicit learning where we are able to incorporate observations to the background theory in service of deciding the entailment of an epistemic query. We prove correctness of the learning procedure and discuss results on the sample complexity, that is how many observations we will need to provably assert that the query is entailed given a user-specified error bound. Finally, we investigate under what circumstances this algorithm can be made efficient. On the last point, given that reasoning in epistemic logics especially in multi-agent epistemic logics is PSPACE-complete, it might seem like there is no hope for this problem. We leverage some recent results on the so-called Representation Theorem explored for single-agent and multi-agent epistemic logics with the only knowing operator to reduce modal reasoning to propositional reasoning.","PeriodicalId":326727,"journal":{"name":"Adaptive Agents and Multi-Agent Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learnability with PAC Semantics for Multi-agent Beliefs\",\"authors\":\"I. Mocanu, Vaishak Belle, Brendan Juba\",\"doi\":\"10.5555/3545946.3599016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The tension between deduction and induction is perhaps the most fundamental issue in areas such as philosophy, cognition, and artificial intelligence. In an influential paper, Valiant recognized that the challenge of learning should be integrated with deduction. In particular, he proposed a semantics to capture the quality possessed by the output of probably approximately correct (PAC) learning algorithms when formulated in a logic. Although weaker than classical entailment, it allows for a powerful model-theoretic framework for answering queries. In this paper, we provide a new technical foundation to demonstrate PAC learning with multi-agent epistemic logics. To circumvent the negative results in the literature on the difficulty of robust learning with the PAC semantics, we consider so-called implicit learning where we are able to incorporate observations to the background theory in service of deciding the entailment of an epistemic query. We prove correctness of the learning procedure and discuss results on the sample complexity, that is how many observations we will need to provably assert that the query is entailed given a user-specified error bound. Finally, we investigate under what circumstances this algorithm can be made efficient. On the last point, given that reasoning in epistemic logics especially in multi-agent epistemic logics is PSPACE-complete, it might seem like there is no hope for this problem. We leverage some recent results on the so-called Representation Theorem explored for single-agent and multi-agent epistemic logics with the only knowing operator to reduce modal reasoning to propositional reasoning.\",\"PeriodicalId\":326727,\"journal\":{\"name\":\"Adaptive Agents and Multi-Agent Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adaptive Agents and Multi-Agent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/3545946.3599016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adaptive Agents and Multi-Agent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/3545946.3599016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

演绎和归纳法之间的紧张关系可能是哲学、认知和人工智能等领域最根本的问题。在一篇有影响力的论文中,Valiant认识到学习的挑战应该与推理相结合。特别是,他提出了一种语义,用于捕获在逻辑中表述时可能近似正确(PAC)学习算法的输出所具有的质量。虽然比经典蕴涵弱,但它允许一个强大的模型理论框架来回答查询。本文为用多智能体认知逻辑来演示PAC学习提供了一个新的技术基础。为了规避文献中关于使用PAC语义进行稳健学习困难的负面结果,我们考虑了所谓的内隐学习,在这种学习中,我们能够将观察结果纳入背景理论,以决定认知查询的蕴涵。我们证明了学习过程的正确性,并讨论了样本复杂性的结果,即在给定用户指定的错误界限的情况下,我们需要多少个观察值来证明查询是必需的。最后,我们研究了在什么情况下该算法是有效的。最后一点,考虑到认知逻辑中的推理,特别是多智能体认知逻辑中的推理是pspace完全的,这个问题似乎没有希望。我们利用所谓的表征定理的一些最新成果,探索了单智能体和多智能体的认知逻辑,并使用唯一知道算子将模态推理简化为命题推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learnability with PAC Semantics for Multi-agent Beliefs
The tension between deduction and induction is perhaps the most fundamental issue in areas such as philosophy, cognition, and artificial intelligence. In an influential paper, Valiant recognized that the challenge of learning should be integrated with deduction. In particular, he proposed a semantics to capture the quality possessed by the output of probably approximately correct (PAC) learning algorithms when formulated in a logic. Although weaker than classical entailment, it allows for a powerful model-theoretic framework for answering queries. In this paper, we provide a new technical foundation to demonstrate PAC learning with multi-agent epistemic logics. To circumvent the negative results in the literature on the difficulty of robust learning with the PAC semantics, we consider so-called implicit learning where we are able to incorporate observations to the background theory in service of deciding the entailment of an epistemic query. We prove correctness of the learning procedure and discuss results on the sample complexity, that is how many observations we will need to provably assert that the query is entailed given a user-specified error bound. Finally, we investigate under what circumstances this algorithm can be made efficient. On the last point, given that reasoning in epistemic logics especially in multi-agent epistemic logics is PSPACE-complete, it might seem like there is no hope for this problem. We leverage some recent results on the so-called Representation Theorem explored for single-agent and multi-agent epistemic logics with the only knowing operator to reduce modal reasoning to propositional reasoning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信