身份证件识别:神经网络方法

V.S. Mustafina, S. Ivanov
{"title":"身份证件识别:神经网络方法","authors":"V.S. Mustafina, S. Ivanov","doi":"10.1109/RusAutoCon52004.2021.9537340","DOIUrl":null,"url":null,"abstract":"The passport of the Russian Federation is the main document of Russian citizens. A Russian passport is required for the vast majority of transactions in banks, government agencies, education, etc. This paper presents a neural network approach to data recognition from the Russian Federation passport. The use of two neural networks is proposed. The first neural network based on SOTA neural network YOLOv5 to determine the location of areas with text. The second convolutional neural network with the topology chosen by the authors to recognize the text in the previously selected blocks. A console application was implemented to demonstrate the approach. The accuracy of the first network is 78.6%, the second is 97.4%.","PeriodicalId":106150,"journal":{"name":"2021 International Russian Automation Conference (RusAutoCon)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identity Document Recognition: Neural Network Approach\",\"authors\":\"V.S. Mustafina, S. Ivanov\",\"doi\":\"10.1109/RusAutoCon52004.2021.9537340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The passport of the Russian Federation is the main document of Russian citizens. A Russian passport is required for the vast majority of transactions in banks, government agencies, education, etc. This paper presents a neural network approach to data recognition from the Russian Federation passport. The use of two neural networks is proposed. The first neural network based on SOTA neural network YOLOv5 to determine the location of areas with text. The second convolutional neural network with the topology chosen by the authors to recognize the text in the previously selected blocks. A console application was implemented to demonstrate the approach. The accuracy of the first network is 78.6%, the second is 97.4%.\",\"PeriodicalId\":106150,\"journal\":{\"name\":\"2021 International Russian Automation Conference (RusAutoCon)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Russian Automation Conference (RusAutoCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RusAutoCon52004.2021.9537340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Russian Automation Conference (RusAutoCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RusAutoCon52004.2021.9537340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

俄罗斯联邦护照是俄罗斯公民的主要证件。在银行、政府机构、教育等领域的绝大多数交易都需要俄罗斯护照。本文提出了一种基于神经网络的俄罗斯联邦护照数据识别方法。提出了两种神经网络的应用。第一个基于SOTA神经网络的YOLOv5确定带有文本区域的位置。第二个卷积神经网络使用作者选择的拓扑来识别先前选择的块中的文本。实现了一个控制台应用程序来演示该方法。第一种网络的准确率为78.6%,第二种为97.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identity Document Recognition: Neural Network Approach
The passport of the Russian Federation is the main document of Russian citizens. A Russian passport is required for the vast majority of transactions in banks, government agencies, education, etc. This paper presents a neural network approach to data recognition from the Russian Federation passport. The use of two neural networks is proposed. The first neural network based on SOTA neural network YOLOv5 to determine the location of areas with text. The second convolutional neural network with the topology chosen by the authors to recognize the text in the previously selected blocks. A console application was implemented to demonstrate the approach. The accuracy of the first network is 78.6%, the second is 97.4%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信