零射击学习基于脚本识别在野外

Prateek Keserwani, K. De, P. Roy, U. Pal
{"title":"零射击学习基于脚本识别在野外","authors":"Prateek Keserwani, K. De, P. Roy, U. Pal","doi":"10.1109/ICDAR.2019.00162","DOIUrl":null,"url":null,"abstract":"The text recognition system for natural images or video frames containing multilingual text needs a method to first identify the written script and then recognize the word in the identified script. However, the occurrence of some scripts is rare as compared to others. Due to the availability of a few samples of the rare script, the supervised learning of the deep neural networks is difficult. To overcome this problem, we have proposed a zero-shot learning based method for script identification. We have also proposed architecture for script identification which fuses the global feature vector and the semantic embedding vector. The semantic embedding of the script is obtained by using the spatial dependency of the stroke's sequence via the recurrent neural network. The proposed architecture shows superior results as compared to the baseline approaches.","PeriodicalId":325437,"journal":{"name":"2019 International Conference on Document Analysis and Recognition (ICDAR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Zero Shot Learning Based Script Identification in the Wild\",\"authors\":\"Prateek Keserwani, K. De, P. Roy, U. Pal\",\"doi\":\"10.1109/ICDAR.2019.00162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The text recognition system for natural images or video frames containing multilingual text needs a method to first identify the written script and then recognize the word in the identified script. However, the occurrence of some scripts is rare as compared to others. Due to the availability of a few samples of the rare script, the supervised learning of the deep neural networks is difficult. To overcome this problem, we have proposed a zero-shot learning based method for script identification. We have also proposed architecture for script identification which fuses the global feature vector and the semantic embedding vector. The semantic embedding of the script is obtained by using the spatial dependency of the stroke's sequence via the recurrent neural network. The proposed architecture shows superior results as compared to the baseline approaches.\",\"PeriodicalId\":325437,\"journal\":{\"name\":\"2019 International Conference on Document Analysis and Recognition (ICDAR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Document Analysis and Recognition (ICDAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2019.00162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2019.00162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

对于包含多语言文本的自然图像或视频帧的文本识别系统,需要一种首先识别书面文字,然后识别被识别文字中的单词的方法。然而,与其他脚本相比,某些脚本的出现是罕见的。由于稀有脚本样本的有限性,深度神经网络的监督学习是困难的。为了克服这个问题,我们提出了一种基于零射击学习的脚本识别方法。我们还提出了融合全局特征向量和语义嵌入向量的脚本识别体系结构。通过递归神经网络,利用笔画序列的空间依赖关系,获得文字的语义嵌入。与基线方法相比,所建议的体系结构显示出更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zero Shot Learning Based Script Identification in the Wild
The text recognition system for natural images or video frames containing multilingual text needs a method to first identify the written script and then recognize the word in the identified script. However, the occurrence of some scripts is rare as compared to others. Due to the availability of a few samples of the rare script, the supervised learning of the deep neural networks is difficult. To overcome this problem, we have proposed a zero-shot learning based method for script identification. We have also proposed architecture for script identification which fuses the global feature vector and the semantic embedding vector. The semantic embedding of the script is obtained by using the spatial dependency of the stroke's sequence via the recurrent neural network. The proposed architecture shows superior results as compared to the baseline approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信