{"title":"光突发交换中的资源预留:预留模块的架构与实现","authors":"S. Junghans, C. Gauger","doi":"10.1117/12.533822","DOIUrl":null,"url":null,"abstract":"This paper presents an architecture and a realization of a burst reservation module for optical burst switching using the just-enough-time (JET) reservation scheme. JET is a reserve-a-fixed-duration reservation algorithm, i.e., wavelength channels are allocated exactly for the burst transmission time. As the exact start and end times of all bursts have to be recorded and processed for JET burst reservation, several publications assumed its realization to be prohibitively complex. This paper proposes an architecture for a hardware-based reservation module for JET. This architecture has been described in VHDL and synthesized on an FPGA representative for today's programmable logic technology. The proposed solution is evaluated under dynamic traffic based on timing and resource utilization results taken from the FPGA realization. The results of the performance evaluation prove that with this reservation module JET can even be realized for burst durations in the microsecond range.","PeriodicalId":187370,"journal":{"name":"OptiComm: Optical Networking and Communications Conference","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Resource reservation in optical burst switching: architectures and realizations for reservation modules\",\"authors\":\"S. Junghans, C. Gauger\",\"doi\":\"10.1117/12.533822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an architecture and a realization of a burst reservation module for optical burst switching using the just-enough-time (JET) reservation scheme. JET is a reserve-a-fixed-duration reservation algorithm, i.e., wavelength channels are allocated exactly for the burst transmission time. As the exact start and end times of all bursts have to be recorded and processed for JET burst reservation, several publications assumed its realization to be prohibitively complex. This paper proposes an architecture for a hardware-based reservation module for JET. This architecture has been described in VHDL and synthesized on an FPGA representative for today's programmable logic technology. The proposed solution is evaluated under dynamic traffic based on timing and resource utilization results taken from the FPGA realization. The results of the performance evaluation prove that with this reservation module JET can even be realized for burst durations in the microsecond range.\",\"PeriodicalId\":187370,\"journal\":{\"name\":\"OptiComm: Optical Networking and Communications Conference\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OptiComm: Optical Networking and Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.533822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OptiComm: Optical Networking and Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.533822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Resource reservation in optical burst switching: architectures and realizations for reservation modules
This paper presents an architecture and a realization of a burst reservation module for optical burst switching using the just-enough-time (JET) reservation scheme. JET is a reserve-a-fixed-duration reservation algorithm, i.e., wavelength channels are allocated exactly for the burst transmission time. As the exact start and end times of all bursts have to be recorded and processed for JET burst reservation, several publications assumed its realization to be prohibitively complex. This paper proposes an architecture for a hardware-based reservation module for JET. This architecture has been described in VHDL and synthesized on an FPGA representative for today's programmable logic technology. The proposed solution is evaluated under dynamic traffic based on timing and resource utilization results taken from the FPGA realization. The results of the performance evaluation prove that with this reservation module JET can even be realized for burst durations in the microsecond range.