预测在线服务器配置,实现跨协作边缘的物联网数据流的成本效益

Zhi Zhou, Xu Chen, Weigang Wu, Di Wu, Junshan Zhang
{"title":"预测在线服务器配置,实现跨协作边缘的物联网数据流的成本效益","authors":"Zhi Zhou, Xu Chen, Weigang Wu, Di Wu, Junshan Zhang","doi":"10.1145/3323679.3326530","DOIUrl":null,"url":null,"abstract":"Edge computing is envisioned to be the de-facto paradigm of hosting emerging low latency Internet-of-Things (IoT) data streaming services.For IoT data streaming in edge computing, cost management is of strategic significance, due to the low cost-efficiency of edge servers. While existing literature adopts a reactive approach to dynamically provisioning edge servers to reduce cost, the delay of server activation and instantiation has been mostly ignored. In this paper, we target a proactive approach to dynamic edge server provisioning for real-time IoT data streaming across edge nodes, which adjusts server provisioning ahead of time, based on prediction of the upcoming workload. To effectively predict upcoming workload, a learning-based method online gradient descent is applied. We further combine the online learning method with an online optimization algorithm for server provisioning in a joint online optimization framework, through (1) minimizing of the regret incurred by inaccurate workload prediction, and (2) minimizing the cost incurred by near-optimal online decisions. The resulting predictive online algorithm can well leverage the power of prediction and achieve a good performance guarantee, as verified by both rigorous theoretical analysis and extensive trace-driven evaluations.","PeriodicalId":205641,"journal":{"name":"Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Predictive Online Server Provisioning for Cost-Efficient IoT Data Streaming Across Collaborative Edges\",\"authors\":\"Zhi Zhou, Xu Chen, Weigang Wu, Di Wu, Junshan Zhang\",\"doi\":\"10.1145/3323679.3326530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge computing is envisioned to be the de-facto paradigm of hosting emerging low latency Internet-of-Things (IoT) data streaming services.For IoT data streaming in edge computing, cost management is of strategic significance, due to the low cost-efficiency of edge servers. While existing literature adopts a reactive approach to dynamically provisioning edge servers to reduce cost, the delay of server activation and instantiation has been mostly ignored. In this paper, we target a proactive approach to dynamic edge server provisioning for real-time IoT data streaming across edge nodes, which adjusts server provisioning ahead of time, based on prediction of the upcoming workload. To effectively predict upcoming workload, a learning-based method online gradient descent is applied. We further combine the online learning method with an online optimization algorithm for server provisioning in a joint online optimization framework, through (1) minimizing of the regret incurred by inaccurate workload prediction, and (2) minimizing the cost incurred by near-optimal online decisions. The resulting predictive online algorithm can well leverage the power of prediction and achieve a good performance guarantee, as verified by both rigorous theoretical analysis and extensive trace-driven evaluations.\",\"PeriodicalId\":205641,\"journal\":{\"name\":\"Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3323679.3326530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3323679.3326530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

边缘计算被设想为托管新兴的低延迟物联网(IoT)数据流服务的事实上的范例。对于边缘计算中的物联网数据流,由于边缘服务器的低成本效率,成本管理具有战略意义。现有文献采用响应式方法动态配置边缘服务器以降低成本,但大多忽略了服务器激活和实例化的延迟。在本文中,我们针对跨边缘节点的实时物联网数据流提供了一种主动的动态边缘服务器配置方法,该方法基于对即将到来的工作负载的预测,提前调整服务器配置。为了有效地预测即将到来的工作量,采用了基于学习的在线梯度下降方法。我们进一步将在线学习方法与在线优化算法结合起来,在一个联合在线优化框架中提供服务器,通过(1)最小化不准确的工作量预测所带来的遗憾,以及(2)最小化近最优在线决策所带来的成本。通过严格的理论分析和广泛的跟踪驱动评估,验证了所得到的在线预测算法可以很好地利用预测的力量,实现良好的性能保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive Online Server Provisioning for Cost-Efficient IoT Data Streaming Across Collaborative Edges
Edge computing is envisioned to be the de-facto paradigm of hosting emerging low latency Internet-of-Things (IoT) data streaming services.For IoT data streaming in edge computing, cost management is of strategic significance, due to the low cost-efficiency of edge servers. While existing literature adopts a reactive approach to dynamically provisioning edge servers to reduce cost, the delay of server activation and instantiation has been mostly ignored. In this paper, we target a proactive approach to dynamic edge server provisioning for real-time IoT data streaming across edge nodes, which adjusts server provisioning ahead of time, based on prediction of the upcoming workload. To effectively predict upcoming workload, a learning-based method online gradient descent is applied. We further combine the online learning method with an online optimization algorithm for server provisioning in a joint online optimization framework, through (1) minimizing of the regret incurred by inaccurate workload prediction, and (2) minimizing the cost incurred by near-optimal online decisions. The resulting predictive online algorithm can well leverage the power of prediction and achieve a good performance guarantee, as verified by both rigorous theoretical analysis and extensive trace-driven evaluations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信