一类奇摄动随机微分方程的模型约简

Narmada Herath, A. Hamadeh, D. Vecchio
{"title":"一类奇摄动随机微分方程的模型约简","authors":"Narmada Herath, A. Hamadeh, D. Vecchio","doi":"10.1109/ACC.2015.7172022","DOIUrl":null,"url":null,"abstract":"A class of singularly perturbed stochastic differential equations (SDE) with linear drift and nonlinear diffusion terms is considered. We prove that, on a finite time interval, the trajectories of the slow variables can be well approximated by those of a system with reduced dimension as the singular perturbation parameter becomes small. In particular, we show that when this parameter becomes small the first and second moments of the reduced system's variables closely approximate the first and second moments, respectively, of the slow variables of the singularly perturbed system. Chemical Langevin equations describing the stochastic dynamics of molecular systems with linear propensity functions including both fast and slow reactions fall within the class of SDEs considered here. We therefore illustrate the goodness of our approximation on a simulation example modeling a well known biomolecular system with fast and slow processes.","PeriodicalId":223665,"journal":{"name":"2015 American Control Conference (ACC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Model reduction for a class of singularly perturbed stochastic differential equations\",\"authors\":\"Narmada Herath, A. Hamadeh, D. Vecchio\",\"doi\":\"10.1109/ACC.2015.7172022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A class of singularly perturbed stochastic differential equations (SDE) with linear drift and nonlinear diffusion terms is considered. We prove that, on a finite time interval, the trajectories of the slow variables can be well approximated by those of a system with reduced dimension as the singular perturbation parameter becomes small. In particular, we show that when this parameter becomes small the first and second moments of the reduced system's variables closely approximate the first and second moments, respectively, of the slow variables of the singularly perturbed system. Chemical Langevin equations describing the stochastic dynamics of molecular systems with linear propensity functions including both fast and slow reactions fall within the class of SDEs considered here. We therefore illustrate the goodness of our approximation on a simulation example modeling a well known biomolecular system with fast and slow processes.\",\"PeriodicalId\":223665,\"journal\":{\"name\":\"2015 American Control Conference (ACC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2015.7172022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2015.7172022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

研究了一类具有线性漂移项和非线性扩散项的奇摄动随机微分方程。证明了在有限的时间区间上,当奇异扰动参数变小时,慢变量的轨迹可以很好地近似为降维系统的轨迹。特别地,我们证明了当该参数变小时,简化后的系统变量的一阶矩和二阶矩分别近似于奇摄动系统的慢变量的一阶矩和二阶矩。描述具有线性倾向函数(包括快速和慢速反应)的分子系统随机动力学的化学朗之万方程属于本文所考虑的一类SDEs。因此,我们在一个模拟例子上说明了我们的近似的优点,该模拟例子模拟了一个众所周知的具有快速和缓慢过程的生物分子系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model reduction for a class of singularly perturbed stochastic differential equations
A class of singularly perturbed stochastic differential equations (SDE) with linear drift and nonlinear diffusion terms is considered. We prove that, on a finite time interval, the trajectories of the slow variables can be well approximated by those of a system with reduced dimension as the singular perturbation parameter becomes small. In particular, we show that when this parameter becomes small the first and second moments of the reduced system's variables closely approximate the first and second moments, respectively, of the slow variables of the singularly perturbed system. Chemical Langevin equations describing the stochastic dynamics of molecular systems with linear propensity functions including both fast and slow reactions fall within the class of SDEs considered here. We therefore illustrate the goodness of our approximation on a simulation example modeling a well known biomolecular system with fast and slow processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信