{"title":"基于绝对零件测量和在线路径补偿的高精度机器人加工","authors":"Tomas Kubela, Ales Pochyly, V. Singule","doi":"10.1109/EDPE.2019.8883912","DOIUrl":null,"url":null,"abstract":"Industrial 6 DOF robots is a platform for various machining processes due to its universality. A machining robot can perform any type of movement in space, the working space is relatively large and can be even extended based on a linear track (7th axis of the robot). Robotic milling is also a flexible and easily reconfigurable system and compared to conventional CNC machines, it is also a cost-saving alternative. However, there is still one main limitation concerned with a lower absolute robot accuracy, in comparison with CNC machines, caused mainly by a lower stiffness of the robot's serial kinematics and/or a backlash error resulting from robot's drives reversion. In this paper, we mostly present experimental results (milling) in order to demonstrate real limitations of robotic machining based on a Leica Laser Tracker system and a measuring arm CimCore. There is also described an approach for online robot path compensation based on the Laser Tracker absolute measurements in real-time where we reached the accuracy of finished products to be from tenths of mm to hundreds of mm.","PeriodicalId":353978,"journal":{"name":"2019 International Conference on Electrical Drives & Power Electronics (EDPE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"High Accurate Robotic Machining based on Absolute Part Measuring and On-Line Path Compensation\",\"authors\":\"Tomas Kubela, Ales Pochyly, V. Singule\",\"doi\":\"10.1109/EDPE.2019.8883912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industrial 6 DOF robots is a platform for various machining processes due to its universality. A machining robot can perform any type of movement in space, the working space is relatively large and can be even extended based on a linear track (7th axis of the robot). Robotic milling is also a flexible and easily reconfigurable system and compared to conventional CNC machines, it is also a cost-saving alternative. However, there is still one main limitation concerned with a lower absolute robot accuracy, in comparison with CNC machines, caused mainly by a lower stiffness of the robot's serial kinematics and/or a backlash error resulting from robot's drives reversion. In this paper, we mostly present experimental results (milling) in order to demonstrate real limitations of robotic machining based on a Leica Laser Tracker system and a measuring arm CimCore. There is also described an approach for online robot path compensation based on the Laser Tracker absolute measurements in real-time where we reached the accuracy of finished products to be from tenths of mm to hundreds of mm.\",\"PeriodicalId\":353978,\"journal\":{\"name\":\"2019 International Conference on Electrical Drives & Power Electronics (EDPE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Electrical Drives & Power Electronics (EDPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDPE.2019.8883912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Electrical Drives & Power Electronics (EDPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDPE.2019.8883912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High Accurate Robotic Machining based on Absolute Part Measuring and On-Line Path Compensation
Industrial 6 DOF robots is a platform for various machining processes due to its universality. A machining robot can perform any type of movement in space, the working space is relatively large and can be even extended based on a linear track (7th axis of the robot). Robotic milling is also a flexible and easily reconfigurable system and compared to conventional CNC machines, it is also a cost-saving alternative. However, there is still one main limitation concerned with a lower absolute robot accuracy, in comparison with CNC machines, caused mainly by a lower stiffness of the robot's serial kinematics and/or a backlash error resulting from robot's drives reversion. In this paper, we mostly present experimental results (milling) in order to demonstrate real limitations of robotic machining based on a Leica Laser Tracker system and a measuring arm CimCore. There is also described an approach for online robot path compensation based on the Laser Tracker absolute measurements in real-time where we reached the accuracy of finished products to be from tenths of mm to hundreds of mm.