{"title":"基于闭环控制的增量板料成形刀具轨迹优化","authors":"Hao Wang, S. Duncan","doi":"10.1109/CASE.2011.6042410","DOIUrl":null,"url":null,"abstract":"Incremental Sheet Forming (ISF) is a novel sheet metal forming technology where the deformation of the metal sheet occurs locally and progressively. Compared to conventional stamping process, ISF does not require custom-made dies and punches which are costly and time-consuming to manufacture, thus ISF is more flexible and is suited to the growing demand for customised production. However, the geometrical accuracy of the shape made by ISF is lower than that made by a stamping process. We address this issue by adopting a linear forming process model and using a closed loop feedback control scheme to generate an optimised tool trajectory. Two types of shapes are produced, and the experimental results show that the by using closed loop control the final geometrical errors can be reduced to a much lower level.","PeriodicalId":236208,"journal":{"name":"2011 IEEE International Conference on Automation Science and Engineering","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Optimization of tool trajectory for Incremental Sheet Forming using closed loop control\",\"authors\":\"Hao Wang, S. Duncan\",\"doi\":\"10.1109/CASE.2011.6042410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Incremental Sheet Forming (ISF) is a novel sheet metal forming technology where the deformation of the metal sheet occurs locally and progressively. Compared to conventional stamping process, ISF does not require custom-made dies and punches which are costly and time-consuming to manufacture, thus ISF is more flexible and is suited to the growing demand for customised production. However, the geometrical accuracy of the shape made by ISF is lower than that made by a stamping process. We address this issue by adopting a linear forming process model and using a closed loop feedback control scheme to generate an optimised tool trajectory. Two types of shapes are produced, and the experimental results show that the by using closed loop control the final geometrical errors can be reduced to a much lower level.\",\"PeriodicalId\":236208,\"journal\":{\"name\":\"2011 IEEE International Conference on Automation Science and Engineering\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Automation Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE.2011.6042410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Automation Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE.2011.6042410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of tool trajectory for Incremental Sheet Forming using closed loop control
Incremental Sheet Forming (ISF) is a novel sheet metal forming technology where the deformation of the metal sheet occurs locally and progressively. Compared to conventional stamping process, ISF does not require custom-made dies and punches which are costly and time-consuming to manufacture, thus ISF is more flexible and is suited to the growing demand for customised production. However, the geometrical accuracy of the shape made by ISF is lower than that made by a stamping process. We address this issue by adopting a linear forming process model and using a closed loop feedback control scheme to generate an optimised tool trajectory. Two types of shapes are produced, and the experimental results show that the by using closed loop control the final geometrical errors can be reduced to a much lower level.