{"title":"GPU上的静态图形挑战","authors":"M. Bisson, M. Fatica","doi":"10.1109/HPEC.2017.8091034","DOIUrl":null,"url":null,"abstract":"This paper presents the details of a CUDA implementation of the Subgraph Isomorphism Graph Challenge, a new effort aimed at driving progress in the graph analytics field. challenge consists of two graph analytics: triangle counting and k-truss. We present our CUDA implementation of the graph triangle counting operation and of the k-truss subgraph decomposition. Both implementations share the same codebase taking advantage of a set intersection operation implemented via bitmaps. The analytics are implemented in four kernels optimized for different types of graphs. At runtime, lightweight heuristics are used to select the kernel to run based on the specific graph taken as input.","PeriodicalId":364903,"journal":{"name":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Static graph challenge on GPU\",\"authors\":\"M. Bisson, M. Fatica\",\"doi\":\"10.1109/HPEC.2017.8091034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the details of a CUDA implementation of the Subgraph Isomorphism Graph Challenge, a new effort aimed at driving progress in the graph analytics field. challenge consists of two graph analytics: triangle counting and k-truss. We present our CUDA implementation of the graph triangle counting operation and of the k-truss subgraph decomposition. Both implementations share the same codebase taking advantage of a set intersection operation implemented via bitmaps. The analytics are implemented in four kernels optimized for different types of graphs. At runtime, lightweight heuristics are used to select the kernel to run based on the specific graph taken as input.\",\"PeriodicalId\":364903,\"journal\":{\"name\":\"2017 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2017.8091034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2017.8091034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents the details of a CUDA implementation of the Subgraph Isomorphism Graph Challenge, a new effort aimed at driving progress in the graph analytics field. challenge consists of two graph analytics: triangle counting and k-truss. We present our CUDA implementation of the graph triangle counting operation and of the k-truss subgraph decomposition. Both implementations share the same codebase taking advantage of a set intersection operation implemented via bitmaps. The analytics are implemented in four kernels optimized for different types of graphs. At runtime, lightweight heuristics are used to select the kernel to run based on the specific graph taken as input.