基于贝叶斯前景分割和GVF-snake的运动目标检测与跟踪

Changjun Wang, Guojun Dai
{"title":"基于贝叶斯前景分割和GVF-snake的运动目标检测与跟踪","authors":"Changjun Wang, Guojun Dai","doi":"10.1109/IWACI.2010.5585122","DOIUrl":null,"url":null,"abstract":"We proposed a robust approach to detect and track moving targets observed by a static camera. The approach relies on a Bayes theorem based background model, a GVF-snake based border tracker and a Kalman estimator. The background model is used to segment foreground targets from background, which has the advantages of insensitiveness to initial observations and the capability of adaptive selection of layer number compared with GMM background model. By modifying its energy term and adding automatic initialization of contours, GVF snake is improved to extract the contours of moving targets in video. To speed up convergence, we introduced a Kalman filter to estimate the contour centers. We demonstrated results on a number of different real sequences. The proposed method was proved effective for both rigid and non-rigid objects and can be used for smart surveillance and traffic monitoring.","PeriodicalId":189187,"journal":{"name":"Third International Workshop on Advanced Computational Intelligence","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Moving targets detection and tracking based on Bayesian foreground segmentation and GVF-snake\",\"authors\":\"Changjun Wang, Guojun Dai\",\"doi\":\"10.1109/IWACI.2010.5585122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We proposed a robust approach to detect and track moving targets observed by a static camera. The approach relies on a Bayes theorem based background model, a GVF-snake based border tracker and a Kalman estimator. The background model is used to segment foreground targets from background, which has the advantages of insensitiveness to initial observations and the capability of adaptive selection of layer number compared with GMM background model. By modifying its energy term and adding automatic initialization of contours, GVF snake is improved to extract the contours of moving targets in video. To speed up convergence, we introduced a Kalman filter to estimate the contour centers. We demonstrated results on a number of different real sequences. The proposed method was proved effective for both rigid and non-rigid objects and can be used for smart surveillance and traffic monitoring.\",\"PeriodicalId\":189187,\"journal\":{\"name\":\"Third International Workshop on Advanced Computational Intelligence\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Workshop on Advanced Computational Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWACI.2010.5585122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Workshop on Advanced Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWACI.2010.5585122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种检测和跟踪静态摄像机观察到的运动目标的鲁棒方法。该方法依赖于基于贝叶斯定理的背景模型、基于GVF-snake的边界跟踪器和卡尔曼估计器。背景模型用于前景目标与背景的分割,与GMM背景模型相比,具有对初始观测值不敏感和层数自适应选择能力强的优点。通过修改GVF snake的能量项和增加轮廓的自动初始化,改进GVF snake提取视频中运动目标的轮廓。为了加快收敛速度,我们引入了卡尔曼滤波来估计轮廓中心。我们在许多不同的实序列上展示了结果。该方法对刚性和非刚性物体均有效,可用于智能监控和交通监控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moving targets detection and tracking based on Bayesian foreground segmentation and GVF-snake
We proposed a robust approach to detect and track moving targets observed by a static camera. The approach relies on a Bayes theorem based background model, a GVF-snake based border tracker and a Kalman estimator. The background model is used to segment foreground targets from background, which has the advantages of insensitiveness to initial observations and the capability of adaptive selection of layer number compared with GMM background model. By modifying its energy term and adding automatic initialization of contours, GVF snake is improved to extract the contours of moving targets in video. To speed up convergence, we introduced a Kalman filter to estimate the contour centers. We demonstrated results on a number of different real sequences. The proposed method was proved effective for both rigid and non-rigid objects and can be used for smart surveillance and traffic monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信