{"title":"基于变量交互的正、负量化关联规则挖掘","authors":"L. N. Alachaher, S. Guillaume","doi":"10.1109/ICTAI.2006.119","DOIUrl":null,"url":null,"abstract":"This paper introduces an efficient method for mining both positive and negative quantitative association rules using a tabular pruning and regrouping strategy coordinated with an interestingness measure. This measure evaluates the impact of a new variable on the concerned association","PeriodicalId":169424,"journal":{"name":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Variables Interaction for Mining Negative and Positive Quantitative Association Rules\",\"authors\":\"L. N. Alachaher, S. Guillaume\",\"doi\":\"10.1109/ICTAI.2006.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces an efficient method for mining both positive and negative quantitative association rules using a tabular pruning and regrouping strategy coordinated with an interestingness measure. This measure evaluates the impact of a new variable on the concerned association\",\"PeriodicalId\":169424,\"journal\":{\"name\":\"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2006.119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2006.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Variables Interaction for Mining Negative and Positive Quantitative Association Rules
This paper introduces an efficient method for mining both positive and negative quantitative association rules using a tabular pruning and regrouping strategy coordinated with an interestingness measure. This measure evaluates the impact of a new variable on the concerned association