非厄米双各向异性介质的有限元方法

C. Krowne
{"title":"非厄米双各向异性介质的有限元方法","authors":"C. Krowne","doi":"10.1109/APS.1993.385316","DOIUrl":null,"url":null,"abstract":"The author considers an extremely general technique which allows the most general nonuniform, lossy, and anisotropic linear media to be treated in electromagnetic problems by developing the weighted residual method for non-Hermitian behavior. Interfacial boundary conditions are partly left to the volumetric integrals, some to the surface integrals, and some as constraints imposed directly on the fields. Conversion of some of the volume integrals to surface integrals is done applying integration by parts in a more explicit and direct fashion than that employed for simpler media where various Green's theorems are used.<<ETX>>","PeriodicalId":138141,"journal":{"name":"Proceedings of IEEE Antennas and Propagation Society International Symposium","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite element method for nonHermitian bianisotropic media\",\"authors\":\"C. Krowne\",\"doi\":\"10.1109/APS.1993.385316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The author considers an extremely general technique which allows the most general nonuniform, lossy, and anisotropic linear media to be treated in electromagnetic problems by developing the weighted residual method for non-Hermitian behavior. Interfacial boundary conditions are partly left to the volumetric integrals, some to the surface integrals, and some as constraints imposed directly on the fields. Conversion of some of the volume integrals to surface integrals is done applying integration by parts in a more explicit and direct fashion than that employed for simpler media where various Green's theorems are used.<<ETX>>\",\"PeriodicalId\":138141,\"journal\":{\"name\":\"Proceedings of IEEE Antennas and Propagation Society International Symposium\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE Antennas and Propagation Society International Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APS.1993.385316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Antennas and Propagation Society International Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.1993.385316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作者考虑了一种极为通用的技术,该技术通过发展非厄米行为的加权残差法来处理电磁问题中最一般的非均匀、有损耗和各向异性线性介质。界面边界条件部分留给体积积分,一些留给表面积分,还有一些作为直接施加在场上的约束。一些体积积分到曲面积分的转换是用分部积分法完成的,这种方法比在简单介质中使用各种格林定理的方法更明确、更直接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite element method for nonHermitian bianisotropic media
The author considers an extremely general technique which allows the most general nonuniform, lossy, and anisotropic linear media to be treated in electromagnetic problems by developing the weighted residual method for non-Hermitian behavior. Interfacial boundary conditions are partly left to the volumetric integrals, some to the surface integrals, and some as constraints imposed directly on the fields. Conversion of some of the volume integrals to surface integrals is done applying integration by parts in a more explicit and direct fashion than that employed for simpler media where various Green's theorems are used.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信