{"title":"阿诺索夫群:局部混合、计数和均分","authors":"Samuel Edwards, Minju M. Lee, H. Oh","doi":"10.2140/gt.2023.27.513","DOIUrl":null,"url":null,"abstract":"For a Zariski dense Anosov subgroup $\\Gamma$ of a semisimple real Lie group $G$, we describe the asymptotic behavior of matrix coefficients $\\Phi(g)=\\langle g f_1, f_2\\rangle$ in $L^2(\\Gamma\\backslash G)$ for local functions $f_1, f_2\\in C_c(\\Gamma\\backslash G)$. These asymptotics involve higher rank analogues of Burger-Roblin measures. As an application, for any symmetric subgroup $H$ of $G$, we obtain a bisector counting result for $\\Gamma$-orbits with respect to the corresponding generalized Cartan decomposition of $G$. Moreover, we obtain analogues of the results of Duke-Rudnick-Sarnak and Eskin-McMullen for counting discrete $\\Gamma$-orbits in affine symmetric spaces $H\\backslash G$. The link between mixing and counting is provided by an equidistribution result for the translates $\\Gamma\\backslash \\Gamma H a$ as $a\\to \\infty$ in $H\\backslash G$.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"Anosov groups: local mixing, counting and equidistribution\",\"authors\":\"Samuel Edwards, Minju M. Lee, H. Oh\",\"doi\":\"10.2140/gt.2023.27.513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a Zariski dense Anosov subgroup $\\\\Gamma$ of a semisimple real Lie group $G$, we describe the asymptotic behavior of matrix coefficients $\\\\Phi(g)=\\\\langle g f_1, f_2\\\\rangle$ in $L^2(\\\\Gamma\\\\backslash G)$ for local functions $f_1, f_2\\\\in C_c(\\\\Gamma\\\\backslash G)$. These asymptotics involve higher rank analogues of Burger-Roblin measures. As an application, for any symmetric subgroup $H$ of $G$, we obtain a bisector counting result for $\\\\Gamma$-orbits with respect to the corresponding generalized Cartan decomposition of $G$. Moreover, we obtain analogues of the results of Duke-Rudnick-Sarnak and Eskin-McMullen for counting discrete $\\\\Gamma$-orbits in affine symmetric spaces $H\\\\backslash G$. The link between mixing and counting is provided by an equidistribution result for the translates $\\\\Gamma\\\\backslash \\\\Gamma H a$ as $a\\\\to \\\\infty$ in $H\\\\backslash G$.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2023.27.513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2023.27.513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45
摘要
对于半简单实数李群$G$的Zariski密集Anosov子群$\Gamma$,我们描述了$L^2(\Gamma\backslash G)$中局部函数$f_1, f_2\in C_c(\Gamma\backslash G)$的矩阵系数$\Phi(g)=\langle g f_1, f_2\rangle$的渐近行为。这些渐近性涉及Burger-Roblin测度的高阶类似物。作为应用,对于$G$的任意对称子群$H$,我们得到了$\Gamma$ -轨道相对于$G$的相应广义Cartan分解的等分线计数结果。此外,我们得到了类似Duke-Rudnick-Sarnak和Eskin-McMullen计算仿射对称空间$H\backslash G$中离散$\Gamma$ -轨道的结果。混合和计数之间的联系由将$\Gamma\backslash \Gamma H a$转换为$H\backslash G$中的$a\to \infty$的均匀分布结果提供。
Anosov groups: local mixing, counting and equidistribution
For a Zariski dense Anosov subgroup $\Gamma$ of a semisimple real Lie group $G$, we describe the asymptotic behavior of matrix coefficients $\Phi(g)=\langle g f_1, f_2\rangle$ in $L^2(\Gamma\backslash G)$ for local functions $f_1, f_2\in C_c(\Gamma\backslash G)$. These asymptotics involve higher rank analogues of Burger-Roblin measures. As an application, for any symmetric subgroup $H$ of $G$, we obtain a bisector counting result for $\Gamma$-orbits with respect to the corresponding generalized Cartan decomposition of $G$. Moreover, we obtain analogues of the results of Duke-Rudnick-Sarnak and Eskin-McMullen for counting discrete $\Gamma$-orbits in affine symmetric spaces $H\backslash G$. The link between mixing and counting is provided by an equidistribution result for the translates $\Gamma\backslash \Gamma H a$ as $a\to \infty$ in $H\backslash G$.