E. Markopoulos, P. Markopoulos, Niko Laivuori, Christos Moridis, Mika Luimula
{"title":"手指跟踪和手部识别技术在虚拟现实海上安全培训中的应用","authors":"E. Markopoulos, P. Markopoulos, Niko Laivuori, Christos Moridis, Mika Luimula","doi":"10.1109/CogInfoCom50765.2020.9237915","DOIUrl":null,"url":null,"abstract":"The competitiveness and development of the maritime sector together with the continuous effort on increasing operations performance while reducing operations costs, drives the needs for on-board effective and qualitative training safety related issues. Virtual reality (VR) has been considered by classification societies and training organizations as a technology that can significantly improve seafarer's performance and competence with the adaptation of maritime applications developed for design simulation and gaming. This paper presents the evolution of the MarSEVR (Maritime Safety Education with VR) technology as a new concept and technology by integrating finger tracking and hand recognition technologies that increase immersiveness and user engagement within the MarISOT technology, a Green Ocean innovation composed of VR safety applications. The paper approaches this integration by addressing game design, pedagogic and cognitive neuroscience principles and challenges on the use of hand recognition and finger tracking in the MarSEVR learning episodes.","PeriodicalId":236400,"journal":{"name":"2020 11th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Finger tracking and hand recognition technologies in virtual reality maritime safety training applications\",\"authors\":\"E. Markopoulos, P. Markopoulos, Niko Laivuori, Christos Moridis, Mika Luimula\",\"doi\":\"10.1109/CogInfoCom50765.2020.9237915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The competitiveness and development of the maritime sector together with the continuous effort on increasing operations performance while reducing operations costs, drives the needs for on-board effective and qualitative training safety related issues. Virtual reality (VR) has been considered by classification societies and training organizations as a technology that can significantly improve seafarer's performance and competence with the adaptation of maritime applications developed for design simulation and gaming. This paper presents the evolution of the MarSEVR (Maritime Safety Education with VR) technology as a new concept and technology by integrating finger tracking and hand recognition technologies that increase immersiveness and user engagement within the MarISOT technology, a Green Ocean innovation composed of VR safety applications. The paper approaches this integration by addressing game design, pedagogic and cognitive neuroscience principles and challenges on the use of hand recognition and finger tracking in the MarSEVR learning episodes.\",\"PeriodicalId\":236400,\"journal\":{\"name\":\"2020 11th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CogInfoCom50765.2020.9237915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CogInfoCom50765.2020.9237915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finger tracking and hand recognition technologies in virtual reality maritime safety training applications
The competitiveness and development of the maritime sector together with the continuous effort on increasing operations performance while reducing operations costs, drives the needs for on-board effective and qualitative training safety related issues. Virtual reality (VR) has been considered by classification societies and training organizations as a technology that can significantly improve seafarer's performance and competence with the adaptation of maritime applications developed for design simulation and gaming. This paper presents the evolution of the MarSEVR (Maritime Safety Education with VR) technology as a new concept and technology by integrating finger tracking and hand recognition technologies that increase immersiveness and user engagement within the MarISOT technology, a Green Ocean innovation composed of VR safety applications. The paper approaches this integration by addressing game design, pedagogic and cognitive neuroscience principles and challenges on the use of hand recognition and finger tracking in the MarSEVR learning episodes.