{"title":"使用持久内存进行大规模内存图分析的经验指南","authors":"Hanyeoreum Bae, Miryeong Kwon, Donghyun Gouk, Sanghyun Han, Sungjoon Koh, Changrim Lee, Dongchul Park, Myoungsoo Jung","doi":"10.1109/ICCD53106.2021.00057","DOIUrl":null,"url":null,"abstract":"We investigate runtime environment characteristics and explore the challenges of conventional in-memory graph processing. This system-level analysis includes empirical results and observations, which are opposite to the existing expectations of graph application users. Specifically, since raw graph data are not the same as the in-memory graph data, processing a billion-scale graph exhausts all system resources and makes the target system unavailable due to out-of-memory at runtime.To address a lack of memory space problem for big-scale graph analysis, we configure real persistent memory devices (PMEMs) with different operation modes and system software frameworks. In this work, we introduce PMEM to a representative in-memory graph system, Ligra, and perform an in-depth analysis uncovering the performance behaviors of different PMEM-applied in-memory graph systems. Based on our observations, we modify Ligra to improve the graph processing performance with a solid level of data persistence. Our evaluation results reveal that Ligra, with our simple modification, exhibits 4.41× and 3.01× better performance than the original Ligra running on a virtual memory expansion and conventional persistent memory, respectively.","PeriodicalId":154014,"journal":{"name":"2021 IEEE 39th International Conference on Computer Design (ICCD)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Empirical Guide to Use of Persistent Memory for Large-Scale In-Memory Graph Analysis\",\"authors\":\"Hanyeoreum Bae, Miryeong Kwon, Donghyun Gouk, Sanghyun Han, Sungjoon Koh, Changrim Lee, Dongchul Park, Myoungsoo Jung\",\"doi\":\"10.1109/ICCD53106.2021.00057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate runtime environment characteristics and explore the challenges of conventional in-memory graph processing. This system-level analysis includes empirical results and observations, which are opposite to the existing expectations of graph application users. Specifically, since raw graph data are not the same as the in-memory graph data, processing a billion-scale graph exhausts all system resources and makes the target system unavailable due to out-of-memory at runtime.To address a lack of memory space problem for big-scale graph analysis, we configure real persistent memory devices (PMEMs) with different operation modes and system software frameworks. In this work, we introduce PMEM to a representative in-memory graph system, Ligra, and perform an in-depth analysis uncovering the performance behaviors of different PMEM-applied in-memory graph systems. Based on our observations, we modify Ligra to improve the graph processing performance with a solid level of data persistence. Our evaluation results reveal that Ligra, with our simple modification, exhibits 4.41× and 3.01× better performance than the original Ligra running on a virtual memory expansion and conventional persistent memory, respectively.\",\"PeriodicalId\":154014,\"journal\":{\"name\":\"2021 IEEE 39th International Conference on Computer Design (ICCD)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 39th International Conference on Computer Design (ICCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD53106.2021.00057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 39th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD53106.2021.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Empirical Guide to Use of Persistent Memory for Large-Scale In-Memory Graph Analysis
We investigate runtime environment characteristics and explore the challenges of conventional in-memory graph processing. This system-level analysis includes empirical results and observations, which are opposite to the existing expectations of graph application users. Specifically, since raw graph data are not the same as the in-memory graph data, processing a billion-scale graph exhausts all system resources and makes the target system unavailable due to out-of-memory at runtime.To address a lack of memory space problem for big-scale graph analysis, we configure real persistent memory devices (PMEMs) with different operation modes and system software frameworks. In this work, we introduce PMEM to a representative in-memory graph system, Ligra, and perform an in-depth analysis uncovering the performance behaviors of different PMEM-applied in-memory graph systems. Based on our observations, we modify Ligra to improve the graph processing performance with a solid level of data persistence. Our evaluation results reveal that Ligra, with our simple modification, exhibits 4.41× and 3.01× better performance than the original Ligra running on a virtual memory expansion and conventional persistent memory, respectively.