使用协处理器的GiST扫描加速

F. Beier, T. Kilias, K. Sattler
{"title":"使用协处理器的GiST扫描加速","authors":"F. Beier, T. Kilias, K. Sattler","doi":"10.1145/2236584.2236593","DOIUrl":null,"url":null,"abstract":"Efficient lookups in huge, possibly multi-dimensional datasets are crucial for the performance of numerous use cases that generate multiple search operations at the same time, like point queries in ray tracing or spatial joins in collision detection of interactive 3D applications. These applications greatly benefit from index structures that quickly filter relevant candidates for further processing. Since different lookup operations are independent from each other, they might be processed in parallel on modern hardware like multi-core CPUs or GPUs. But implementing efficient algorithms for all kinds of indexes on various hardware platforms is a challenging task. In this paper, we present a new approach that extends the existing GiST index framework with an abstraction layer for the hardware where index operations are executed. Furthermore, we provide first performance evaluations for the scan execution on CPUs and an Nvidia Tesla GPU.","PeriodicalId":298901,"journal":{"name":"International Workshop on Data Management on New Hardware","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"GiST scan acceleration using coprocessors\",\"authors\":\"F. Beier, T. Kilias, K. Sattler\",\"doi\":\"10.1145/2236584.2236593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient lookups in huge, possibly multi-dimensional datasets are crucial for the performance of numerous use cases that generate multiple search operations at the same time, like point queries in ray tracing or spatial joins in collision detection of interactive 3D applications. These applications greatly benefit from index structures that quickly filter relevant candidates for further processing. Since different lookup operations are independent from each other, they might be processed in parallel on modern hardware like multi-core CPUs or GPUs. But implementing efficient algorithms for all kinds of indexes on various hardware platforms is a challenging task. In this paper, we present a new approach that extends the existing GiST index framework with an abstraction layer for the hardware where index operations are executed. Furthermore, we provide first performance evaluations for the scan execution on CPUs and an Nvidia Tesla GPU.\",\"PeriodicalId\":298901,\"journal\":{\"name\":\"International Workshop on Data Management on New Hardware\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Data Management on New Hardware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2236584.2236593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Data Management on New Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2236584.2236593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在巨大的、可能是多维的数据集中进行高效的查找对于同时生成多个搜索操作的许多用例的性能至关重要,例如光线追踪中的点查询或交互式3D应用程序碰撞检测中的空间连接。这些应用程序极大地受益于索引结构,它可以快速过滤相关候选以进行进一步处理。由于不同的查找操作是相互独立的,因此它们可以在多核cpu或gpu等现代硬件上并行处理。但是在不同的硬件平台上实现针对各种索引的高效算法是一项具有挑战性的任务。在本文中,我们提出了一种新的方法,它扩展了现有的GiST索引框架,为执行索引操作的硬件提供了一个抽象层。此外,我们对cpu和Nvidia Tesla GPU的扫描执行进行了首次性能评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GiST scan acceleration using coprocessors
Efficient lookups in huge, possibly multi-dimensional datasets are crucial for the performance of numerous use cases that generate multiple search operations at the same time, like point queries in ray tracing or spatial joins in collision detection of interactive 3D applications. These applications greatly benefit from index structures that quickly filter relevant candidates for further processing. Since different lookup operations are independent from each other, they might be processed in parallel on modern hardware like multi-core CPUs or GPUs. But implementing efficient algorithms for all kinds of indexes on various hardware platforms is a challenging task. In this paper, we present a new approach that extends the existing GiST index framework with an abstraction layer for the hardware where index operations are executed. Furthermore, we provide first performance evaluations for the scan execution on CPUs and an Nvidia Tesla GPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信