{"title":"目标:图像和网格的自动增强器","authors":"Vinit Veerendraveer Singh, C. Kambhamettu","doi":"10.1109/CVPR52688.2022.00080","DOIUrl":null,"url":null,"abstract":"Data augmentations are commonly used to increase the robustness of deep neural networks. In most contemporary research, the networks do not decide the augmentations; they are task-agnostic, and grid search determines their magnitudes. Furthermore, augmentations applicable to lower-dimensional data do not easily extend to higher-dimensional data and vice versa. This paper presents an auto-augmenter for images and meshes (AIM) that easily incorporates into neural networks at training and inference times. It Jointly optimizes with the network to produce constrained, non-rigid deformations in the data. AIM predicts sample-aware deformations suited for a task, and our experiments confirm its effectiveness with various networks.","PeriodicalId":355552,"journal":{"name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AIM: an Auto-Augmenter for Images and Meshes\",\"authors\":\"Vinit Veerendraveer Singh, C. Kambhamettu\",\"doi\":\"10.1109/CVPR52688.2022.00080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data augmentations are commonly used to increase the robustness of deep neural networks. In most contemporary research, the networks do not decide the augmentations; they are task-agnostic, and grid search determines their magnitudes. Furthermore, augmentations applicable to lower-dimensional data do not easily extend to higher-dimensional data and vice versa. This paper presents an auto-augmenter for images and meshes (AIM) that easily incorporates into neural networks at training and inference times. It Jointly optimizes with the network to produce constrained, non-rigid deformations in the data. AIM predicts sample-aware deformations suited for a task, and our experiments confirm its effectiveness with various networks.\",\"PeriodicalId\":355552,\"journal\":{\"name\":\"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR52688.2022.00080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52688.2022.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data augmentations are commonly used to increase the robustness of deep neural networks. In most contemporary research, the networks do not decide the augmentations; they are task-agnostic, and grid search determines their magnitudes. Furthermore, augmentations applicable to lower-dimensional data do not easily extend to higher-dimensional data and vice versa. This paper presents an auto-augmenter for images and meshes (AIM) that easily incorporates into neural networks at training and inference times. It Jointly optimizes with the network to produce constrained, non-rigid deformations in the data. AIM predicts sample-aware deformations suited for a task, and our experiments confirm its effectiveness with various networks.