NURA:支持gpu中非统一资源访问的框架

Sina Darabi, Negin Mahani, Hazhir Bakhishi, Ehsan Yousefzadeh-Asl-Miandoab, Mohammad Sadrosadati, H. Sarbazi-Azad
{"title":"NURA:支持gpu中非统一资源访问的框架","authors":"Sina Darabi, Negin Mahani, Hazhir Bakhishi, Ehsan Yousefzadeh-Asl-Miandoab, Mohammad Sadrosadati, H. Sarbazi-Azad","doi":"10.1145/3489048.3522656","DOIUrl":null,"url":null,"abstract":"Multi-application execution in Graphics Processing Units (GPUs), a promising way to utilize GPU resources, is still challenging. Some pieces of prior work (e.g. spatial multitasking) have limited opportunity to improve resource utilization, while others, e.g. simultaneous multi-kernel, provide fine-grained resource sharing at the price of unfair execution. This paper proposes a new multi-application paradigm for GPUs, called NURA, that provides high potential to improve resource utilization and ensure fairness and Quality-of-Service(QoS). The key idea is that each streaming multiprocessor (SM) executes the Cooperative Thread Arrays (CTAs) that belong to only one application (similar to spatial multi-tasking) and shares its unused resources with the SMs running other applications demanding more resources. NURA handles resource sharing process mainly using a software approach to provide simplicity, low hardware overhead, and flexibility.We also perform some hardware modifications as an architectural support for our software-based proposal. Our conservative analysis reveals that the hardware area overhead of our proposal is less than 1.07% with respect to the whole GPU die. Our experimental results over various mixes of GPU workloads show that NURA improves throughput by 26% compared to the state-of-the-art spatial multi-tasking, on average, while meeting QoS targets. In terms of fairness, NURA has almost similar results to spatial multitasking, while it outperforms simultaneous multi-kernel by 76%, on average.","PeriodicalId":264598,"journal":{"name":"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"NURA: A Framework for Supporting Non-Uniform Resource Accesses in GPUs\",\"authors\":\"Sina Darabi, Negin Mahani, Hazhir Bakhishi, Ehsan Yousefzadeh-Asl-Miandoab, Mohammad Sadrosadati, H. Sarbazi-Azad\",\"doi\":\"10.1145/3489048.3522656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-application execution in Graphics Processing Units (GPUs), a promising way to utilize GPU resources, is still challenging. Some pieces of prior work (e.g. spatial multitasking) have limited opportunity to improve resource utilization, while others, e.g. simultaneous multi-kernel, provide fine-grained resource sharing at the price of unfair execution. This paper proposes a new multi-application paradigm for GPUs, called NURA, that provides high potential to improve resource utilization and ensure fairness and Quality-of-Service(QoS). The key idea is that each streaming multiprocessor (SM) executes the Cooperative Thread Arrays (CTAs) that belong to only one application (similar to spatial multi-tasking) and shares its unused resources with the SMs running other applications demanding more resources. NURA handles resource sharing process mainly using a software approach to provide simplicity, low hardware overhead, and flexibility.We also perform some hardware modifications as an architectural support for our software-based proposal. Our conservative analysis reveals that the hardware area overhead of our proposal is less than 1.07% with respect to the whole GPU die. Our experimental results over various mixes of GPU workloads show that NURA improves throughput by 26% compared to the state-of-the-art spatial multi-tasking, on average, while meeting QoS targets. In terms of fairness, NURA has almost similar results to spatial multitasking, while it outperforms simultaneous multi-kernel by 76%, on average.\",\"PeriodicalId\":264598,\"journal\":{\"name\":\"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489048.3522656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489048.3522656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在图形处理单元(GPU)中执行多应用程序是利用GPU资源的一种很有前途的方法,但仍然具有挑战性。一些先前的工作(例如空间多任务)在提高资源利用率方面的机会有限,而另一些工作(例如同步多内核)以不公平的执行为代价提供了细粒度的资源共享。本文提出了一种新的gpu多应用范例,称为NURA,它在提高资源利用率和确保公平性和服务质量(QoS)方面具有很高的潜力。关键思想是,每个流多处理器(SM)执行只属于一个应用程序的协作线程数组(cta)(类似于空间多任务),并与运行其他需要更多资源的应用程序的SMs共享其未使用的资源。NURA主要使用软件方法处理资源共享过程,以提供简单性、低硬件开销和灵活性。我们还执行了一些硬件修改,作为基于软件的建议的架构支持。我们的保守分析表明,我们的建议的硬件面积开销相对于整个GPU芯片小于1.07%。我们对各种GPU工作负载混合的实验结果表明,与最先进的空间多任务相比,NURA平均提高了26%的吞吐量,同时满足QoS目标。就公平性而言,NURA的结果与空间多任务处理几乎相似,但它比同步多内核的平均性能高出76%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NURA: A Framework for Supporting Non-Uniform Resource Accesses in GPUs
Multi-application execution in Graphics Processing Units (GPUs), a promising way to utilize GPU resources, is still challenging. Some pieces of prior work (e.g. spatial multitasking) have limited opportunity to improve resource utilization, while others, e.g. simultaneous multi-kernel, provide fine-grained resource sharing at the price of unfair execution. This paper proposes a new multi-application paradigm for GPUs, called NURA, that provides high potential to improve resource utilization and ensure fairness and Quality-of-Service(QoS). The key idea is that each streaming multiprocessor (SM) executes the Cooperative Thread Arrays (CTAs) that belong to only one application (similar to spatial multi-tasking) and shares its unused resources with the SMs running other applications demanding more resources. NURA handles resource sharing process mainly using a software approach to provide simplicity, low hardware overhead, and flexibility.We also perform some hardware modifications as an architectural support for our software-based proposal. Our conservative analysis reveals that the hardware area overhead of our proposal is less than 1.07% with respect to the whole GPU die. Our experimental results over various mixes of GPU workloads show that NURA improves throughput by 26% compared to the state-of-the-art spatial multi-tasking, on average, while meeting QoS targets. In terms of fairness, NURA has almost similar results to spatial multitasking, while it outperforms simultaneous multi-kernel by 76%, on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信