基于CNN的双向聚合特征融合掌纹识别

Jianxin Zhang, Aoqi Yang, Mingli Zhang, Qiang Zhang
{"title":"基于CNN的双向聚合特征融合掌纹识别","authors":"Jianxin Zhang, Aoqi Yang, Mingli Zhang, Qiang Zhang","doi":"10.1504/IJBM.2018.095292","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel bidirectional aggregated features representation from convolutional neural networks (CNNs) with score-level fusion for palmprint recognition. Our method adopts the vector of locally aggregated descriptors (VLAD) to encode the convolutional features from two directions, i.e., vertical and horizontal directions, to mine both the local and global descriptions of palmprint image. Then, three score-level fusion rules are respectively employed to integrate the matching scores of the bidirectional features. We extensively evaluate the performance of convolutional features, vertical and horizontal encoding together with the score-level fusion rules through recent deep network VGG-F on the PolyU palmprint and multispectral palmprint databases. Experiments demonstrate that horizontal encoding significantly outperforms vertical encoding on red, green, blue and near-infrared (NIR) palmprint image subsets while it is slightly worse on PolyU palmprint database, moreover, the effective performance improvement can be achieved after the fusions.","PeriodicalId":262486,"journal":{"name":"Int. J. Biom.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bidirectional aggregated features fusion from CNN for palmprint recognition\",\"authors\":\"Jianxin Zhang, Aoqi Yang, Mingli Zhang, Qiang Zhang\",\"doi\":\"10.1504/IJBM.2018.095292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel bidirectional aggregated features representation from convolutional neural networks (CNNs) with score-level fusion for palmprint recognition. Our method adopts the vector of locally aggregated descriptors (VLAD) to encode the convolutional features from two directions, i.e., vertical and horizontal directions, to mine both the local and global descriptions of palmprint image. Then, three score-level fusion rules are respectively employed to integrate the matching scores of the bidirectional features. We extensively evaluate the performance of convolutional features, vertical and horizontal encoding together with the score-level fusion rules through recent deep network VGG-F on the PolyU palmprint and multispectral palmprint databases. Experiments demonstrate that horizontal encoding significantly outperforms vertical encoding on red, green, blue and near-infrared (NIR) palmprint image subsets while it is slightly worse on PolyU palmprint database, moreover, the effective performance improvement can be achieved after the fusions.\",\"PeriodicalId\":262486,\"journal\":{\"name\":\"Int. J. Biom.\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Biom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJBM.2018.095292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Biom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBM.2018.095292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了一种新的基于卷积神经网络(cnn)的双向聚合特征表示和分数级融合的掌纹识别方法。该方法采用局部聚合描述子向量(VLAD)从垂直和水平两个方向对卷积特征进行编码,挖掘掌纹图像的局部和全局描述。然后,分别采用三个分数级融合规则对双向特征的匹配分数进行融合;我们通过最新的深度网络VGG-F在理大掌纹和多光谱掌纹数据库上广泛评估了卷积特征、垂直和水平编码以及分数级融合规则的性能。实验表明,在红、绿、蓝和近红外掌纹图像子集上,水平编码的性能明显优于垂直编码,而在理大掌纹数据库上,水平编码的性能略差,并且融合后的掌纹图像可以得到有效的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bidirectional aggregated features fusion from CNN for palmprint recognition
In this paper, we present a novel bidirectional aggregated features representation from convolutional neural networks (CNNs) with score-level fusion for palmprint recognition. Our method adopts the vector of locally aggregated descriptors (VLAD) to encode the convolutional features from two directions, i.e., vertical and horizontal directions, to mine both the local and global descriptions of palmprint image. Then, three score-level fusion rules are respectively employed to integrate the matching scores of the bidirectional features. We extensively evaluate the performance of convolutional features, vertical and horizontal encoding together with the score-level fusion rules through recent deep network VGG-F on the PolyU palmprint and multispectral palmprint databases. Experiments demonstrate that horizontal encoding significantly outperforms vertical encoding on red, green, blue and near-infrared (NIR) palmprint image subsets while it is slightly worse on PolyU palmprint database, moreover, the effective performance improvement can be achieved after the fusions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信