环境嗅探:鲁棒语音系统的噪声知识估计

Murat Akbacak, J. Hansen
{"title":"环境嗅探:鲁棒语音系统的噪声知识估计","authors":"Murat Akbacak, J. Hansen","doi":"10.1109/ICASSP.2003.1202307","DOIUrl":null,"url":null,"abstract":"We propose a framework for extracting knowledge about environmental noise from an input audio sequence and organizing this knowledge for use by other speech systems. To date, most approaches dealing with environmental noise in speech systems are based on assumptions about the noise, or differences in the collection of and training on a specific noise condition, rather than exploring the nature of the noise. We are interested in constructing a new speech framework, entitled environmental sniffing, to detect, classify and track acoustic environmental conditions. The first goal of the framework is to seek out detailed information about the environmental characteristics instead of just detecting environmental changes. The second goal is to organize this knowledge in an effective manner to allow smart decisions to direct other speech systems. Our current framework uses a number of speech processing modules including the Teager energy operator (TEO) and a hybrid algorithm with T/sup 2/-BIC segmentation, noise language modeling and GMM classification in noise knowledge estimation. We define a new information criterion that incorporates the impact of noise on environmental sniffing performance. We use an in-vehicle speech and noise environment as a test platform for our evaluations and investigate the integration of environmental sniffing into an automatic speech recognition (ASR) engine in this environment. Noise classification experiments show that the hybrid algorithm achieves an error rate of 25.51%, outperforming a baseline system by an absolute 7.08%.","PeriodicalId":104473,"journal":{"name":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Environmental sniffing: noise knowledge estimation for robust speech systems\",\"authors\":\"Murat Akbacak, J. Hansen\",\"doi\":\"10.1109/ICASSP.2003.1202307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a framework for extracting knowledge about environmental noise from an input audio sequence and organizing this knowledge for use by other speech systems. To date, most approaches dealing with environmental noise in speech systems are based on assumptions about the noise, or differences in the collection of and training on a specific noise condition, rather than exploring the nature of the noise. We are interested in constructing a new speech framework, entitled environmental sniffing, to detect, classify and track acoustic environmental conditions. The first goal of the framework is to seek out detailed information about the environmental characteristics instead of just detecting environmental changes. The second goal is to organize this knowledge in an effective manner to allow smart decisions to direct other speech systems. Our current framework uses a number of speech processing modules including the Teager energy operator (TEO) and a hybrid algorithm with T/sup 2/-BIC segmentation, noise language modeling and GMM classification in noise knowledge estimation. We define a new information criterion that incorporates the impact of noise on environmental sniffing performance. We use an in-vehicle speech and noise environment as a test platform for our evaluations and investigate the integration of environmental sniffing into an automatic speech recognition (ASR) engine in this environment. Noise classification experiments show that the hybrid algorithm achieves an error rate of 25.51%, outperforming a baseline system by an absolute 7.08%.\",\"PeriodicalId\":104473,\"journal\":{\"name\":\"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2003.1202307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2003.1202307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

我们提出了一个框架,用于从输入音频序列中提取有关环境噪声的知识,并组织这些知识以供其他语音系统使用。迄今为止,大多数处理语音系统中环境噪声的方法都是基于对噪声的假设,或者在特定噪声条件下收集和训练的差异,而不是探索噪声的本质。我们感兴趣的是构建一个新的语音框架,称为环境嗅探,以检测,分类和跟踪声环境条件。该框架的第一个目标是寻找有关环境特征的详细信息,而不仅仅是检测环境变化。第二个目标是以有效的方式组织这些知识,以便做出明智的决策来指导其他语音系统。我们目前的框架在噪声知识估计中使用了许多语音处理模块,包括Teager能量算子(TEO)和T/sup 2/-BIC分割、噪声语言建模和GMM分类的混合算法。我们定义了一个新的信息标准,其中包括噪声对环境嗅探性能的影响。我们使用车载语音和噪声环境作为我们评估的测试平台,并研究在该环境中将环境嗅探集成到自动语音识别(ASR)引擎中。噪声分类实验表明,混合算法的错误率为25.51%,比基线系统高出7.08%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Environmental sniffing: noise knowledge estimation for robust speech systems
We propose a framework for extracting knowledge about environmental noise from an input audio sequence and organizing this knowledge for use by other speech systems. To date, most approaches dealing with environmental noise in speech systems are based on assumptions about the noise, or differences in the collection of and training on a specific noise condition, rather than exploring the nature of the noise. We are interested in constructing a new speech framework, entitled environmental sniffing, to detect, classify and track acoustic environmental conditions. The first goal of the framework is to seek out detailed information about the environmental characteristics instead of just detecting environmental changes. The second goal is to organize this knowledge in an effective manner to allow smart decisions to direct other speech systems. Our current framework uses a number of speech processing modules including the Teager energy operator (TEO) and a hybrid algorithm with T/sup 2/-BIC segmentation, noise language modeling and GMM classification in noise knowledge estimation. We define a new information criterion that incorporates the impact of noise on environmental sniffing performance. We use an in-vehicle speech and noise environment as a test platform for our evaluations and investigate the integration of environmental sniffing into an automatic speech recognition (ASR) engine in this environment. Noise classification experiments show that the hybrid algorithm achieves an error rate of 25.51%, outperforming a baseline system by an absolute 7.08%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信