{"title":"并网电气化铁路低频振荡的最优控制","authors":"P. Dey, C. Sumpavakup, P. Kirawanich","doi":"10.1109/RI2C56397.2022.9910283","DOIUrl":null,"url":null,"abstract":"This paper presents mitigation of grids’ low-frequency oscillations is carried in presence of railway traction load. In order to better deal with these low frequency oscillations, this study has considered the vehicle-grid cascade system. The numerical study of the single-machine infinite bus (SMIB) system has evaluated the influence of electric traction vehicle (ETV) by establishing overall small signal model of the grid connected vehicle. The performance of the system is compared for ETV-connected SMIB and ETV-connected SMIB equipped with linear quadratic regulator (LQR) controller. It is observed that modified SMIB power system with LQR-based control is superior to others in improving system responses with significantly reduced settling time, rise time, and peak overshoot.","PeriodicalId":403083,"journal":{"name":"2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal Control of Grid Connected Electric Railways to Mitigate Low Frequency Oscillations\",\"authors\":\"P. Dey, C. Sumpavakup, P. Kirawanich\",\"doi\":\"10.1109/RI2C56397.2022.9910283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents mitigation of grids’ low-frequency oscillations is carried in presence of railway traction load. In order to better deal with these low frequency oscillations, this study has considered the vehicle-grid cascade system. The numerical study of the single-machine infinite bus (SMIB) system has evaluated the influence of electric traction vehicle (ETV) by establishing overall small signal model of the grid connected vehicle. The performance of the system is compared for ETV-connected SMIB and ETV-connected SMIB equipped with linear quadratic regulator (LQR) controller. It is observed that modified SMIB power system with LQR-based control is superior to others in improving system responses with significantly reduced settling time, rise time, and peak overshoot.\",\"PeriodicalId\":403083,\"journal\":{\"name\":\"2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RI2C56397.2022.9910283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RI2C56397.2022.9910283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal Control of Grid Connected Electric Railways to Mitigate Low Frequency Oscillations
This paper presents mitigation of grids’ low-frequency oscillations is carried in presence of railway traction load. In order to better deal with these low frequency oscillations, this study has considered the vehicle-grid cascade system. The numerical study of the single-machine infinite bus (SMIB) system has evaluated the influence of electric traction vehicle (ETV) by establishing overall small signal model of the grid connected vehicle. The performance of the system is compared for ETV-connected SMIB and ETV-connected SMIB equipped with linear quadratic regulator (LQR) controller. It is observed that modified SMIB power system with LQR-based control is superior to others in improving system responses with significantly reduced settling time, rise time, and peak overshoot.