论随机键图中三角形的存在性

Osman Yağan, A. Makowski
{"title":"论随机键图中三角形的存在性","authors":"Osman Yağan, A. Makowski","doi":"10.1109/ALLERTON.2009.5394489","DOIUrl":null,"url":null,"abstract":"Random key graphs are random graphs induced by the random key predistribution scheme of Eschenauer and Gligor under the assumption of full visibility. For this class of random graphs we show the existence of a zero-one law for the appearance of triangles, and identify the corresponding critical scaling. This is done by applying the method of first and second moments to the number of triangles in the graph.","PeriodicalId":440015,"journal":{"name":"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"On the existence of triangles in random key graphs\",\"authors\":\"Osman Yağan, A. Makowski\",\"doi\":\"10.1109/ALLERTON.2009.5394489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Random key graphs are random graphs induced by the random key predistribution scheme of Eschenauer and Gligor under the assumption of full visibility. For this class of random graphs we show the existence of a zero-one law for the appearance of triangles, and identify the corresponding critical scaling. This is done by applying the method of first and second moments to the number of triangles in the graph.\",\"PeriodicalId\":440015,\"journal\":{\"name\":\"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2009.5394489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2009.5394489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

随机密钥图是在完全可见假设下,由Eschenauer和Gligor的随机密钥预分配方案生成的随机密钥图。对于这类随机图,我们证明了三角形出现的0 - 1定律的存在性,并确定了相应的临界尺度。这是通过将第一和第二矩的方法应用于图中三角形的数量来完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the existence of triangles in random key graphs
Random key graphs are random graphs induced by the random key predistribution scheme of Eschenauer and Gligor under the assumption of full visibility. For this class of random graphs we show the existence of a zero-one law for the appearance of triangles, and identify the corresponding critical scaling. This is done by applying the method of first and second moments to the number of triangles in the graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信